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New Higher-Order Godunov Code for Modelling Performance of Two-Stage
Light Gas Guns

D. W. BOGDANOFF*

Thermosciences Institute

and

R. J. MILLER**

Ames Research Center

Summary

A new quasi-one-dimensional Godunov code for mod-
elling two-stage light gas guns is described. The code is
third-order accurate in space and second-order accurate in
time. A very accurate Riemann solver is used. Friction
and heat transfer to the tube wall for gases and dense
media are modelled and a simple nonequilibrium turbu-
lence model is used for gas flows. The code also models
gunpowder burn in the first-stage breech. Realistic equa-
tions of state (EOS) are used for all media. The code was
validated against exact solutions of Riemann’s shock-tube
problem, impact of dense media slabs at velocities up to
20 km/sec, flow through a supersonic convergent-
divergent nozzle and burning of gunpowder in a closed
bomb. Excellent validation results were obtained. The
code was then used to predict the performance of two
light gas guns (1.5 in. and 0.28 in.) in service at the Ames
Research Center. The code predictions were compared
with measured pressure histories in the powder chamber
and pump tube and with measured piston and projectile
velocities. Very good agreement between computational
fluid dynamics (CFD) predictions and measurements was
obtained. Actual powder-burn rates in the gun were found
to be considerably higher (60–90 percent) than predicted
by the manufacturer and the behavior of the piston upon
yielding appears to differ greatly from that suggested by
low-strain rate tests.

1  Introduction

In 1993, after being shut down for a number of years, the
radiation ballistic range facility at the NASA Ames
Research Center was reactivated. Tests were performed in
1993–94 using Ames’ 0.28 in. and 1.5 in. caliber two-
stage light gas guns. These tests studied, primarily, dam-
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age caused by simulated space debris impacts on space
station wall segments and space shuttle tiles. Ames has
long served as an agency source of expertise in light gas
gun launcher research, development and testing (ref. 1).
For the space debris impact tests, an increase in the gun
muzzle velocity was desired to allow a more complete
simulation of the possible velocity range of space debris
impacts. Such a muzzle velocity increase must be accom-
plished with great care to avoid excessive gun erosion and
the overstressing of the gun or the launch package. It
would also be desirable to reduce the maximum gun and
projectile base pressures and gun erosion, while maintain-
ing muzzle velocity. Experimental gun development is
very costly in time and money (there can be eight or more
gun operating parameters which can be varied) and can
carry considerable risk of major damage to the facility. A
well-validated, user-friendly computational fluid dynam-
ics (CFD) gun code capable of guiding the selection of
gun operating parameters to safely and economically
achieve increases in muzzle velocity and/or reductions in
maximum gun pressures and gun erosion is needed. The
code described herein has been used to help increase the
muzzle velocity of the Ames 1.5 in. gun (for a fairly
heavy projectile) from 6.6 to 7.1 km/sec, while, at the
same time, reducing gun erosion by 50 percent.

Figure 1 shows a sketch (not to scale) of a representative
two-stage light gas gun. From left to right, we see the
powder chamber, the initial position of the plastic piston
in the pump tube, the very long pump tube, initially filled
with hydrogen or helium, the contraction section, the
diaphragm just behind the projectile, the projectile in its
initial position and the gun barrel (or launch tube). Upon
ignition of the powder charge, the piston is accelerated to
a velocity of the order of 800 m/sec. The piston travels
down the pump tube, greatly compressing and heating the
working gas. The working gas can be volumetrically
compressed by a factor of the order of 1000, reaching
pressures of roughly 10,000 bar and (theoretical) tempera-
tures as high as 3000 K. At certain point in the
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Figure 1. Representative two-stage light gas gun. Not to scale.

compression process, the diaphragm ruptures and the
projectile begins to accelerate down the gun barrel.

The great advantage of the two-stage gun over a single-
stage powder or gas gun is as follows. For the single-stage
gun, it is difficult to obtain a sound speed of the driving
gas which is much greater than 1–1.4 km/sec. This usually
limits the muzzle velocity of such a gun to a maximum of
2.5–3 km/sec. With the two-stage gun technique, the
energy of the powder gas is transferred, with a reasonably
high efficiency, to a much smaller mass of low molecular
weight working gas. The sound speed of the working gas,
at maximum compression, can be as high as 4–4.5 km/sec.
This permits the two-stage gun to reach muzzle velocities
of 7–8 km/sec fairly routinely. With very light projectiles,
and driving the gun hard, velocities as high as
10–11 km/sec can be obtained.

All media in the gun (powder/powder gas, piston, working
gas, and projectile) are subject to very high pressures and
temperatures and therefore should be modelled with
equations of state (EOS) which are accurate under these
conditions. As an example, for the gases, the ideal gas
EOS is usually very inaccurate in the setting of two-stage
guns. The piston and projectile may show high strain rate
behavior which is very different from that which would be
expected based on available low-strain rate data. Friction
and heat transfer of gases and solids to the tube wall are
very important, can cause reductions (refs. 2 and 3) in
muzzle velocity of 10–20 percent, and should be carefully
modelled. It would be desirable to assess to what extent
nonequilibrium turbulence in the gas flows may affect the
skin friction and heat transfer to the tube walls.

The two-stage light gas gun was not the only quasi-one-
dimensional flow problem which needed to be modelled
at Ames at this point in time. There was also interest in
high-explosive detonations, high explosive driven ram
accelerators and hypervelocity impact. These phenomena

require accurate modelling at pressures from 300 kbar to
10 Mbar and higher pressures, well beyond the
representative maximum pressures in light gas guns
(10–15 kbar). It would be desirable to obtain a code which
was capable of dealing with these very-high-pressure
problems as well as for modelling light gas guns.

A number of CFD codes (refs. 3–9) for one- and two-
stage guns were examined. The IBHVG2 code (ref. 5) is
limited to modelling single-stage guns. The code by
Charters and Sangster (ref. 3) is a two-stage gun code, but
does not include friction and heat  transfer and uses EOS
which have limited ranges of applicability. It is known
(refs. 2 and 3) that friction and heat transfer effects can
cause muzzle velocity reductions of 10–20 percent. The
ALE code (ref. 9) does not calculate the entire gun cycle,
but rather starts with a given piston velocity history and a
point mass piston. Powder-burn and piston deformation
are not treated. The gas friction model does not include
Mach number and wall-temperature effects. For the EOS
of hydrogen, a 28-coefficient fit to tabulated data is used.
The MOOREA code (refs. 7 and 8) uses a van der Waals
volumetric EOS for the pump tube gas and powder gases
and a segmented thermal EOS for the pump-tube gas. The
latter EOS is composed of three regions, each with Cv
varying as AiT + Bi, where Cv is the specific heat at con-
stant volume, T is temperature and Ai and Bi are con-
stants, different for each region. The friction model for the
piston and projectile either uses a constant force at the
base of the piston or projectile or increases the mass of the
piston or projectile a few percent. The LLG3 model
(ref. 4) uses a volumetrically and thermally perfect EOS
for the pump tube gas. The gas friction model does not
include a wall-temperature effect and wall heating from
piston and projectile friction do not appear to be included.
The HVML89 model (ref. 6), developed from the earlier
model of reference 2, uses the van der Waals EOS for the
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pump-tube and powder gases and an isothermal EOS for
the piston material.

None of these codes included nonequilibrium gas turbu-
lence effects and the EOS limitations would preclude
them from producing accurate results at megabar pres-
sures. In addition, all of the code examined failed to
include one or more additional phenomena which it was
desired to model. The authors emphasize that there is
nothing wrong with the codes discussed above when used
for the purposes for which they were written and they
have, in fact, yielded a large number of very useful
results. Rather, they do not easily lend themselves to
model all the phenomena we wished to study in two-stage
light gas guns and also to study megabar pressures (at
least, not without substantial modifications). Making sub-
stantial changes deep within another worker’s program
can be an extremely lengthy and, at times, cost-ineffective
process (although one may learn to run a well-
documented code written by another worker rather easily).
For these reasons, taken together, it was decided to
construct a new code.

The new code presented here uses the Godunov (ref. 10)
technique. Briefly, the Godunov technique solves a
Riemann problem at every cell boundary at every timestep
in order to calculate the flux between the two cells in
question at the time in question. Figure 2 shows an

x-t wave diagram of such a Riemann problem. The
abscissa is distance (perpendicular to the cell boundary)
from one cell to the other and the ordinate is time starting
from the beginning of the timestep. The initial conditions
on the two sides of the cell boundary at the beginning of
the timestep are conditions 1 and 4. The dynamics of the
Riemann problem gives rise to a pressure wave travelling
into the medium of the left cell, an interface between the
two media and a pressure wave travelling into the medium
of the right cell. These waves and the interface are shown
in figure 2. The conditions in the two new zones 2 and 3
can be calculated to many different degrees of accuracy,
as required. The flux is then calculated according to the
zone in which the cell-boundary resides during the
timestep in question. For the case of figure 2, if the cell
boundary were motionless, its path in the x-t diagram
would be vertical and it would reside in zone 2. The
fluxes would then be evaluated simply and directly from
the media conditions of zone 2. The technique is exceed-
ingly flexible. No assumptions about the EOS of the
media are necessary. It is not necessary to explicitly insert
any artificial viscosity. Extrapolations (or interpolations)
to the cell boundary in question can be first, second, third,
or even higher order accuracy. The Riemann solver can be
first, second, or higher order accurate and its order of
accuracy can readily be changed to suit the problem in
question.

x, distance

t, 
ti

m
e 1

2 3

4

Wave Interface Wave

Figure 2.  x-t wave diagram for Riemann problem between two cells. Initial conditions at beginning of timestep are those in
regions 1 and 4. Waves progress into both these regions and an interface separates the media initially in regions 1 and 4.



4

The features of the new higher-order Godunov code pre-
sented herein include the following:

(1) It models the complete two-stage gun cycle, from
the start of powder burn, to the projectile exiting the
muzzle.

(2) It uses the Godunov technique, outlined above,
which has been shown (ref. 10) to be very robust for
dense media and extremely high velocities. It is third
order accurate in space and second-order accurate in time.
The Riemann solver used is of very high accuracy, being
exact for shocks and using a very accurate power law
integration scheme for expansion waves.

(3) It uses realistic EOS for all media. The EOS for
solids includes the effects of both density and energy on
pressure and would remain valid for megabar pressures.
Simple models for high strain rate effects can be intro-
duced into the modelling of the piston and the projectile.

(4) Friction and heat transfer from gases and dense
media to the tube wall are included. The gas-phase
friction and heat-transfer model includes compressibility
and wall-temperature effects. A simple model for
nonequilibrium gas turbulence is included.

(5) The basic algorithms are capable of producing
accurate results at pressures well into the megabar range.
Thus, the code could be used to model high explosive
detonations or hypervelocity impact phenomena. During
the validation of the present code using exact analytical
solutions (see sec. 4.2), accurate CFD solutions were
obtained at pressures up to 8 megabars. A earlier version
of the code (ref. 10) has produced accurate solutions at
pressures up to 10,000 megabars.

(6) The code is well-documented and user-friendly
versions exist for Cray and HP computers. The documen-
tation includes descriptions of all the physics modelled,
the algorithms used and approximations  made. A manual
is available, giving complete instructions for the use of the
code.

This technical memorandum will discuss all aspects of the
higher-order Godunov code. The governing equations,
source terms and boundary conditions (bc) will be dis-
cussed along with the accompanying numerical methods.
The code will be validated, in part, by comparison with a
number of exact analytical solutions. Further validation
will be shown by comparison with recent, extensive
experimental data from Ames’ 0.28 in. and 1.5 in. caliber
light gas guns. The code has been found to be very useful
in a theoretical and experimental study (ref. 11) of the
technique of inserting an extra diaphragm into the pump
tube of a two-stage gun in order to increase gun perfor-
mance. The code has been used to guide modifications of

the operating conditions of the Ames 1.5 in. gun to yield
muzzle velocity increases (for a moderately heavy projec-
tile) from 6.6 to 7.1 km/sec and, at the same time, a
50 percent decrease in gun erosion (ref. 12). Further, it
has yielded some very interesting insights into the burning
of gunpowder in the first-stage breech and the apparently
anomalous yielding behavior of the pump tube piston.
These last two results will be presented herein.

Support for DWB by NASA (Contract NAS-2-14031) to
Eloret is gratefully acknowledged.

2  Formulation

In this section, we present the formulation of the problem.
The governing gasdynamic equations are presented in
section 2.1. The various options available for the EOS of
the media are presented in section 2.2. Sections 2.3–2.6
present the formulation of the various source terms which
appear in the equations. These include the wall-pressure
term, friction and heat-transfer terms for gases and dense
media and the gunpowder combustion terms.

2.1.  Governing Equations

The quasi-one-dimensional gasdynamic equations used,
written in conservation form, are

A
U

t

FA

x
H

A

x
AW DV

∂
∂

∂
∂

∂
∂

π= − + + +( )
(1)

where the state vector is given by

U u e m mt= ( , , , , ,....)ρ ρ ρ ρ1 2 (2)

the flux vector is given by

F u u p u e p um umt= + +( , , ( ), , ,...)ρ ρ ρ ρ2
1 2 (3)

the wall-pressure component of the source term is given
by

H p= ( , , , , ,...)0 0 0 0 (4)

the chemical-reaction component of the source term is
given by
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W w w= ( , , , , ,...)0 0 0 1 2 (5)

and the wall-friction and heat-transfer component of the
source term is given by

V q= ( , , , , ,...)0 0 0τ (6)

where A denotes cross-sectional area, D, tube diameter, ρ,
density, u, velocity, e, the internal energy per unit mass, p,
pressure, mi, mass fraction of the ith component,
et = ρ(e + u2/2), wi, the species mass generation rate per
unit volume for the ith component, –τ, the wall-shear
stress and –q, the wall-heat flux. The speed of sound, c,
temperature and pressure are obtained from the EOS
described below. The code uses a finite volume formula-
tion with state variables calculated at the center of each
computational cell.

2.2  EOS

The code offers a number of EOS options. We will
describe them below. (The label numbers given refer to
those used in our CFD code.) Option #1 uses the Abel
(ref. 13) volumetric EOS,

p v b
R T

m
u( )− =  (7)

where p is pressure, v, specific volume, b, molecular vol-
ume, Ru, the universal gas constant, T, temperature and
m, molecular weight. The enthalpy is determined assum-
ing constant specific heat. This option can be used with
single or multiple species. Option number #2 also uses
equation (7), but determines the enthalpy with variable
specific heats using data from the Joint Army-Navy-
NASA-Air Force (JANNAF) tables (ref. 14). Again, this
option can be used with single or multiple species. Option
#3 is Zel’dovich and Raizer’s three term dense media
EOS (ref. 15) with the third term  neglected. This term
was dropped because:

(1) it is an electron temperature term which is very
small for the dense media conditions of interest here,

(2) calculation of shock Hugoniots for the piston and
projectile material using two terms only of the Zel’dovich
and Raizer EOS shows excellent agreement with the

experimental data of reference 10 up to megabar pres-
sures, and

(3) its inclusion significantly complicates the solu-
tion of the EOS in the code and slows down the code
appreciably.

From the experimental shock Hugoniot data of ref-
erence 16 for a given medium, a good determination of
the constants in this EOS can be made. Option #4 is a
two-dimensional tabulated EOS of the form T(ρ,e), p(ρ,e).
From the tabulated grid-point values, bi-cubic interpola-
tions are made in logarithmic space to obtain values of T,
p, pρ,e, and pe,ρ at the desired point. The sound speed is
then calculated from p, ρ, pρ,e, and pe,ρ. For the hydrogen
gas used in the current CFD code, the EOS was con-
structed as follows. First, equilibrium calculations were
made for point hydrogen molecules (and atoms) over the
full required pressure and temperature ranges. Then, a
molecular volume term was added which follows the
Zel’dovich and Raizer (ref. 15) cold pressure-volume
relation for dense media.

p A
o

n

=






−












ρ
ρ

1 (8)

where ρo is a reference density and A and n are empirical
constants for the medium in question. The constants in
equation (8) for hydrogen were determined by fitting the
experimental shock Hugoniot data (ref. 16) for liquid
hydrogen to the Zel’dovich and Raizer’s three term dense
media EOS (ref. 15) with the third term  neglected. It can
be shown that this yields an EOS for hydrogen which
compares rather well with the tabulated SESAME
(ref. 17) EOS. There are about twice as many grid points
per decade in our gridding than for the SESAME EOS,
which was designed for an extremely wide range of densi-
ties and temperatures, i.e., densities from 5 × 10–6 to
1750 gm/cm3 (for hydrogen) and temperatures from 0.04
to 30,000 electron volts. The higher density of grid points
considerably improves the accuracy and smoothness of
interpolated results.

Two options are available for two-phase EOSs for
the gunpowder/powder gas regions. Option #7 uses
the tabulated EOS for the gas phase and a simple model
with constant density and internal energy for the solid
phase. Option #8 uses the option #1 (with one species
only) for the gas phase and the constant density, constant
internal energy model for the solid phase. In the gun
solutions presented herein, option #8 was used for the
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gunpowder/powder gas regions, option #4 for the piston
and projectile and option #6 for the hydrogen gas.

2.3  Source Terms–Wall-Pressure Term

When there is an area change over the length of a compu-
tational cell, a momentum source term is required in the
equations. A simple way to evaluate this term would be as
follows.

F
p p

Aw
l r= +

2
∆ (9)

where Fw is the wall-pressure force (source) term, ∆A is
the area change and pl and pr are the pressures at the left
and right ends of the cell. The average pressure acting
over the wall is assumed to be (pl  + pr)/2. A more sophis-
ticated technique can be used to evaluate Fw, as follows.
Parabolic fits are made to the channel area profile and the
pressure variation along the channel. These can then be
integrated over the cell length to provide a more accurate
estimate of Fw. In code proof tests in a supersonic con-
vergent-divergent nozzle, the more sophisticated evalua-
tion of Fw yielded significantly lower errors and, hence,
has become a permanent part of the code.

2.4  Source Terms–Gas-Phase Friction and Heat-
Transfer Terms

The calculation of these terms is presented in some detail
in Appendix A and, hence, will only briefly be outlined
here. We start with the well known (refs. 18 and 19) skin
friction correlations for pipe flow. We base a correction
for the effects of Mach number and the difference
between the wall temperature and the average stream
temperature on the correlations developed by van Driest
(ref. 20). We have developed a “reference temperature”
technique which fairly accurately reproduces the varia-
tions of skin friction coefficient, f, with Mach number and
the (wall temperature)/(stream temperature) ratio given by
van Driest’s correlations. The turbulent component of f is
then corrected for nonequilibrium turbulence effects as
described in Appendix B and briefly, in the next para-
graph. With f determined, the wall friction momentum
term follows directly. We then use a form of Reynolds’
analogy (ref. 21) to estimate the wall-heat transfer energy
term. For regions with gas and solids (gunpowder/powder
gas), the wall friction and heat-transfer terms are based on
the gas properties only. This two-phase flow condition
applies only in the upstream part of the pump tube for the
first part of the solution before all the powder is burned.
Currently, Tw is prescribed and held fixed at 300 K.  At a

later time, the code will be modified to allow for wall-
heating effects.

A simple model (App. B) was developed which assumes
that the nonequilibrium turbulence kinetic energy (TKE)
relaxes towards the equilibrium value for the flow in ques-
tion with an e-folding length which is a certain number of
tube diameters. (The e-folding length is the distance along
the tube over which the difference between the nonequi-
librium and equilibrium TKE would drop to 1/eth of its
original value in a steady flow with constant cross-
section.) The range of Reynolds numbers (Re) for hydro-
gen flow in the pump tube is typically 3 × 105 to 3 × 107.
Detailed turbulence measurements (refs. 22 and 23) for
fully developed pipe flow were found at a maximum Re
of 5 × 105. This Re is within our range, but towards the
low end of it. However, turbulent pipe flow does not
appear to change very rapidly with Re over the Re range
of interest (at least over the range 3 × 105 to 3 × 106

reported in ref. 24). Hence, a rough estimate of the
number of pipe diameters required for relaxation of the
turbulent kinetic energy towards the equilibrium value
was obtained from the data of references 22 and 23. This
number (3.27 diameters) was used in our model. By writ-
ing a simple TKE equation with this relaxation term and
the appropriate convection terms across cell boundaries,
the TKE in any cell at any time can be calculated. With
values for the nonequilibrium and equilibrium TKEs in
hand, the turbulent portion of the skin friction coefficient
is multiplied by a term (TKEnonequil/TKEequil )0.5, to
reflect the increased transport of momentum and energy
due to nonequilibrium turbulence. Further details are
given in Appendix B.

2.5  Source Terms–Solid-Phase Friction and Heat-
Transfer Terms

The calculation of these terms is also presented in some
detail in Appendix C and will only briefly be outlined
here. Our technique is a variation of that presented in ref-
erence 4. First, the normal stress on the tube walls is cal-
culated from the axial pressure which appears in the CFD
code using a simple elastic-plastic model. This stress is
first calculated, assuming elastic behavior, taking into
account (1) the initial jamming of the solid into the tube
and (2) the axial (CFD) pressure term. For the piston, the
initial jamming is produced by cooling the piston in a
freezer (which causes it to contract), inserting it into the
pump tube and allowing it to return to room temperature.
As the piston temperature rises, it expands and generates
jamming stresses. If the calculated difference between the
axial and normal stresses is found to be greater than the
yield stress, this difference is simply set to the yield stress.
This latter procedure is the plastic part of the modelling.
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The friction coefficient between the solid and the walls, as
a function of velocity, is modelled from the experimental
data of reference 25, following the techniques of refer-
ences 26–28. The friction force on the wall is then calcu-
lated and limited by the estimated shear yield stress of the
solid, following reference 29. The momentum source term
follows directly. The energy source term is simply taken
to be 1/2 × (friction source term) × (velocity). This term is
a loss of energy from the solid to the wall due to frictional
heating. The other half of the heat generated by the fric-
tional work is assumed to flow to the solid and therefore
does not represent an energy loss from the solid.

2.6  Source Terms–Gunpowder Burn

The powder grains are of the standard form of circular
cylinders with a number (usually 0, 1, or 7) of circular
perforations parallel to the outer cylinder axis. The linear
surface regression rate, r, of the powder is taken to follow
the usual ballistics expression (see, for example, ref. 30)

r apn= (10)

where p is the pressure and a and n are constants given by
the maker of the powder or by military testing laborato-
ries. The specific energy released upon burning of the
gunpowder, ∆E, is calculated from

∆E E powder gas E solid powder= ( ) −  ( ) (11)

E powder gas
I

( ) =
−γ 1

(12)

I
T

M
A= Impetus =

Ru (13)

where E(solid powder) is the internal energy of the solid
powder, γ is the specific-heat ratio of the powder gas, Ru
is the universal gas constant, TA is the adiabatic flame
temperature of the powder and M is the mean molecular
weight of the powder gas. I (the “impetus”), γ, and M are
given by the powder manufacturer. E(solid powder) is
estimated at room temperature from the specific heat of
the powder. The density and energy of the unburned pow-
der are assumed to remain constant at their room tempera-
ture values. Thus, no heat transfer to the powder is
considered.

With the initial shape of the powder grains known, the
linear regression rate calculated using equation (10) and

the specific energy release of the powder upon combus-
tion known, the necessary powder burn source terms for
energy deposition and change of powder into powder gas
can readily be evaluated. The amount of powder burned
per cell per timestep is calculated using a predictor-
corrector method, so it is second-order accurate in time.

The unburned powder and the powder gas are assumed to
move together—there is no relative motion between the
two phases and, hence, no erosive burning effects due to
relative gas-powder velocity differences. The powder is
also assumed to be distributed at a uniform density
throughout the first-stage breech. This avoids the produc-
tion of spurious slosh wave effects. These were deliber-
ately accepted limitations made to allow the code effort to
concentrate on two-stage effects, that is, piston, hydrogen,
and projectile dynamics. The code thus is not suitable for
the detailed study of single-stage military-type weapons
where relative motion between the gas and the powder
and erosive burning effects can be important. From the
comparison between experimental and theoretical
powder-chamber and pump-tube pressure histories and
piston velocities (see secs. 5.3 and 5.4), the above
assumption will prove to be very good for the present
purposes.

3  Numerical Method

The numerical method will be described in this section.
The method of updating of the cell-center state variables
in time is presented in section 3.1. The extrapolations,
interpolations and limiters used to calculate the primitive
variables at the cell boundaries are described in sect-
ion 3.2. The Riemann solvers used to calculate the fluxes
at the cell boundaries are presented in section 3.3.
Calculations of the conditions at the zone boundaries are
described in section 3.4. The multiple zoning techniques
used, including the selection of the distributions of cell
sizes in the various zones, are described in section 3.5.
Finally, the techniques used to model jamming or bounc-
ing of the pump-tube piston are presented in section 3.6.

3.1.  Code Advancement in Time

To calculate the fluid dynamic part of the time step, the
code employs an explicit MacCormack predictor-corrector
differencing scheme (ref. 31) which is second-order
accurate in time. For this purpose, the solution to equa-
tion (1) is advanced in time for the predictor and corrector
as follows.

U V U V F A F A F tn n n n
L
n

L
n

R
n

R
n

S
n+ + = + −( ) +





1 1 ∆ (14)
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F p A A qAS
n

w w
n= +( )0 0 0, , , , ,....∆ τ (15)

U V U V F A F A F tn n n n
L
n

L
n

R
n

R
n

S
n+ + = + −( ) +





1 1 ' ' ' ' ' ∆ (16)

F p A A qAS
n

w w
n' ', , , , ,....= +( )0 0 0∆ τ (17)

F
F Fn

n n
' = + +1

2
(18)

where

U = state vector

V = cell volume

AL,AR = left- and right-cell boundary areas

∆A = AR – AL

Aw = projection of cell wall area normal to axis

FL,FR = left- and right-cell boundary fluxes

FS = fluid dynamic source term

∆t = time step

q = wall heat flux

τ = wall shear stress

p = “average” cell pressure

n superscript denotes conditions at start of step

n +1 superscript denotes conditions at end of predic-
tor step

n+1 superscript denotes conditions at end of corrector
step

n’ superscript denotes average of the fluxes evaluated
at the n and n +1 time levels

For details of the calculations of the p A Aw∆ ,  τ , and

qAw  terms, see sections 2.3–2.5 and Appendices A–C.

When the computational grid slides, V V Vn n n≠ ≠+ +1 1

and the areas must be carefully averaged values. Other-

wise, spurious source terms can be generated. If the cell

center e or ρ values calculated from equations (14) and

(16) are less than a given fraction (fcr) of the value at the

beginning of the timestep, they are reset to that fraction.

The best performance was found when fcr  was in the

range 0.3–0.5. The results presented herein were calcu-

lated with fcr  equal to 0.5. This safety device is invoked

only very rarely, when very strong shock waves are

involved.

After the above second-order fluid dynamic advancement
in time is performed, a second-order time accurate
“chemistry in a closed box” powder-burn calculation is
made, as described in section 2.6. For the powder burn,
the solution to equation (1) is advanced in time for the
predictor and corrector as follows.

U V U V F tn n n n
sb
n+ = +1 ∆ (19)

F V w E w wsb
n n

b
n= −( )0 0, , , ,∆ (20)

U V U V F tn n n n
sb
n+ = +1 ' ∆ (21)

F V w E w wsb
n n

b
n' ', , , ,= −( )0 0 ∆ (22)

where

Fsb = powder burn source term

w = mass of powder consumed per unit volume,
per time

∆Eb = energy released upon powder burn, per unit
mass of powder

In the formulation of equations (19)–(22), only two
species are considered, unburned gunpowder and powder
gas. Also, since the chemistry takes placed in a fixed,
closed box, the volume, Vn, is the same at all time levels;
it is included in equations (19)–(22) simply to place them
in the same form as equations (14)–(18). Since these two
second-order procedures are completely separated in the
time step, the interaction between them is only first-order
accurate in time. For the current purposes of gunpowder
burn only, this does not cause any difficulties. Since the
method is explicit, the von Neumann stability criterion
(ref. 32) that the CFL number be less than one must be
applied. Most of our results were obtained at a CFL num-
ber of 0.7.

3.2  Determination of Cell Boundary Values

The fluxes at the cell boundaries are calculated from val-
ues of the primitive variables (ρ, u, e, and mi) on the two



9

sides of the cell boundary. The cell-boundary values are
obtained from extrapolation or interpolations of the cell-
center values. All extrapolations and interpolations are
made by cell numbers, taking no account of the physical
sizes of the cells. Most of the calculations of internal cell-
boundary values are with third order extrapolations and
interpolations. Six sets of variables with which to extrapo-
late and interpolate were tested before deciding on (ρ, u,
e, and mi). In these six sets of variables, the second vari-
able was either u or ρu and the third variable was either e,
ρe, or e t. In extensive testing with the Reimann shock
tube problem at a pressure ratio of 1000, the primitive
variables gave the best combination of minimum oscilla-
tion size (about 1–2 percent) and minimum spurious
entropy production and heating. (Small, rapidly damped
oscillations of amplitudes of 1–2 percent  sometimes
appear in the solutions in the neighborhood of strong
shock waves.)

Figure 3 illustrates the extrapolation and interpolation
procedures. We consider the right-side boundary value of
a primitive variable at the boundary 1–2 between cells 1

and 2. The cell-center values are indicated by the dots for
cells 1 to 4. At the boundary 1–2, third-order extrapolation
gives the value 3e, third-order interpolation gives the
value 3i and second-order extrapolation gives the value 2,
all indicated by open circles. The choice of boundary val-
ues used in the present code is as follows. If the 3i value is
between the 3e and 2 values, it is used as the final
extrapolation/interpolation value. If the interpolated value
is outside the range of the 3e and 2 values, whichever of
the 3e and 2 values is closest to the 3i value is taken as the
final extrapolation/interpolation value. So, for the case
shown in figure 3, the 3e value would be selected.

For the cell boundary one cell removed from a zone
boundary, extrapolation/interpolation from the zone
boundary towards the cell boundary is generally of second
order only. This is because only one, rather than two,
ghost cell is used beyond each zone boundary. The reason
for dropping to second order at this location is that when
constructing ghost cells across a boundary between two
very different media, there is a considerable degree of
freedom even in constructing a single ghost cell. We were

1 2 3 4

    Cell
boundary
     1-2

Cell number
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23e
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Figure 3.  Illustration of extrapolation and interpolation from cell-center to cell-boundary values.
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able to find reasonable, robust solutions for this problem
with single ghost cells. However, for two ghost cells, the
degree of freedom becomes much more severe, and it was
judged better not to broach the problem, but rather to
remain with a single ghost cell.

In addition, for some simple inlet and outlet conditions,
such as constant condition inlet or constant pressure out-
let, simple first-order bc were used at the inlet or outlet
zone boundaries. These first-order conditions were used
only for proofing of the code and were not used for any
gun solutions presented herein. All of the gun solutions
presented herein used third-order extrapolations/
interpolations, except as described in the preceding para-
graph. The code has, however, options to be run with
second- or first-order extrapolations and has occasionally
been so run, when problems occurred during the initial
code development and debugging.

After the extrapolations/interpolations of the primitive
variables have been done to the cell boundaries, they are

limited to prevent them from being outside the range of
the cell-center values straddling the cell boundary in ques-
tion. This procedure is illustrated in figure 4. The abscissa
is the original extrapolated/interpolated value and the
ordinate is the final limited value. The diagonal line
through the origin is at a 1:1 slope. The solid line repre-
sents the limited primitive variable. Basically, the limited
value is taken to be the extrapolated/interpolated value if
it is between the cell-center values, but if it is outside the
range of the cell-center values, the nearest cell-center
value is substituted instead. A refinement has been added,
however, as shown in figure 4. Instead of using abrupt
breaks at the change points between the use of full
extrapolated/interpolated values and the use of cell-center
values, we have found superior code results to be obtained
if one uses parabolic blending in these regions, as shown
in figure 4. The size of the parabolic blending regions is
much exaggerated in figure 4 (by about a factor of 6) for
clarity. A value of δ/L of 0.025 was found to work well.

δ δ
δ δ

L

1

1

Right hand cell
center value

Left hand cell
center value

Initial extrapolated/interpolated value

F
in

al
 li

m
it

ed
 v

al
ue

δ/L = 0.025

Figure 4.  Illustration of parabolic blending of the limiting of extrapolated/interpolated cell-boundary values.
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The above limiting processes were found to be insuf-
ficient for calculations of very strong waves. A “strong
wave limiting” (SWL) process, described below, was
found to be necessary. Consider the extrapolation/
interpolation procedures from the right hand direction to
obtain the cell-boundary conditions between cells 1 and 2
in figure 1. Across each of the cell boundaries involved in
the extrapolation/interpolation procedures, i.e., bound-
aries 1–2, 2–3, and 3–4, we assess the strength of the
waves present by calculating the following three
parameters, β1, β2, and β3. We then find the largest

β1 =
−

( )
u u

c c
l r

l rmin ,
(23)

β
ρ ρ

2 2 2
=

−

( )
p p

c c

l r

l l r rmin ,
(24)

β
ρ ρ

ρ ρ3 =
−

( )
l l r r

l l r r

c c

c cmin ,
(25)

of the nine β values (three types of β values, each at three
different cell-boundary locations) and denote it by βmax.
(In eqs. (23)–(25), c denotes the sound speed and the sub-
scripts l and r denote conditions on the left- and right-
hand sides of the boundary.) We use this βmax value to
decide if strong waves are present in the extrapolation/
interpolation zone and hence, whether further limiting
towards first-order values is required. If βmax is greater
than a critical value, α1, the extrapolated value is replaced
the corresponding first-order cell-center value. If βmax is
less than a second critical value, α 2, the higher-order
extrapolated/interpolated value is used without further
modification. If βmax is between α 1 and α 2, a linear blend
of first- and higher-order values is used. This linear blend
assures that there is always a smooth, progressive change
from higher order to first order as the wave becomes
stronger. The values for α1 and α 2 used in the current
code are 8 and 4. By referring to equations (23)–(25), one
may see that this means that the SWL limiting process is
only used in a very few places in the code where
extremely strong waves are present. We note here that if
the extrapolation/interpolations are second order rather
than third order, the β values of equations (23)–(25)
would be examined at only two cell boundaries, instead of
the three as in the above discussion. The extrapolation/
interpolation and limiting procedures are essentially the

same at zone boundaries as at cell boundaries as described
above.

3.3  Flux Calculations

With the left- and right-side values of the primitive vari-
ables at the cell or zone boundary determined as described
above, the fluxes across the boundary are determined
using a Riemann solver, as for any Godunov-type method.
Figure 5 shows typical Riemann solutions. Zones 1 and 4
in each case are the left- and right-side conditions,
extrapolated/interpolated as described above. In fig-
ure 5(a) is shown the usual Riemann solution, with two
waves, in this case an expansion wave (E) and a shock
wave (S) and an interface. Two new regions, 2 and 3, are
created by the Riemann solution dynamics.

Depending upon the initial conditions in zones 1 and 4,
the two waves can be expansion and shock (E,S) (as
shown in fig. 5(a)) or (S,E), (S,S), or (E,E). If two very
powerful expansions are created in the Riemann problem,
it may be necessary to include a fifth, minimum pressure,
zone as shown in figure 5(b). This would be a vacuum
region for a situation where at least one of the regions 1
and 4 was a gas or a region at the tensile yield stress if
both regions 1 and 4 were dense media. Our code does not
have the ability to model spall, that is, to create new free
surfaces in solids under high-tensile stresses. Rather, the
solid is modelled as capable of stretching indefinitely at
the yield stress. While this obviously makes the code
unsuited for modelling spall situations, both CFD work
and experimental observations of conditions of the piston
and projectile in light gas guns strongly suggest that this
code limitation is of little consequence for almost all light
gas gun operating conditions modelled. The solutions
obtained can, of course, be monitored for the occurrence
of stresses at the tensile yield level in solid material zones.

The essential components of the Riemann solver are
expansion and shock solvers. The differential form for a
general isentropic expansion or compression is given in
equations (26)–(28) below.

dp c d= 2 ρ (26)

de
p

d=
ρ

ρ2 (27)

du
dp

c
= ±

ρ
(28)
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Figure 5.  Riemann problems at cell or zone boundary. (a) Shows the usual problem, with two waves and an interface;
(b) shows the special problem, with two very strong expansions and a minimum pressure or vacuum region between the
expansions.
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For a weak wave (either expansion or compression), with
|du/c| not more than 0.03, the above expressions are used
in the code with little modifications. For stronger waves,
more accurate expressions are required.

The calculation of stronger expansion waves starts with
the determination of the exponent relating the sound speed
variation with the density variation, i.e., α in equa-
tion (29) below.

c

c1 1
=







ρ
ρ

α
(29)

This is determined by varying the density a small amount
from the starting condition. (The starting condition is
denoted by subscript 1 in eq. (29)). It turns out that this
exponent is, in fact, very nearly constant for a wide range
of real media even for very deep expansions. Hence, with
α determined for small density variations and then
assumed constant for substantial density variations, rather
good exact integrations of equations (26)–(28) can be
obtained. These can be readily derived and hence, are not
given here. These integrations were used for expansions
in our Riemann solvers. The integrations can easily be
carried out to either a specified velocity or pressure. The
calculated values of the density and energy at the end of
the expansion are limited, in that they are not allowed to
go below 1 percent of the corresponding initial values.
Such limiting need be applied only for a very small num-
ber of cases in a typical solution.

Three shock wave solvers have been used with success in
the code. The first is a linear solver with density limiting;
equations (30)–(34) are used in this case.

p p c u u2 1 1 1 2 1= + −ρ (30)

ρ ρ2 1
2 1

1
2= + −p p

c
(31)

ρ ρρLIM r= 1 (32)

ρ ρ ρ2 2f LIM= ( )min , (33)

e e p p
f

2 1 1 2
1 2

1

2

1 1= + +( ) −




ρ ρ

(34)

The conditions with subscripts 1 and 2 are before and
after the shock, respectively. Equations (30) and (31) are
derived directly from equations (26) and (28) above.
Since the density ratio is known to be limited for strong
shocks, the derived value of ρ2 is limited to ρ2f using
equations (32) and (33). The values of rρ are constants for
each media input into the CFD code. Reasonable values
are selected after considerable study of the behavior of
each media. For gunpowder/gunpowder gas, polyethylene
and hydrogen, the values of ρr chosen were 9.55, 2.2, and
9.0, respectively. Equation (34) for the energy, e2, is exact
if the values of p2 and ρ2f were exact.

The second solver, a quadratic solver, is presented next.
This solver was derived independently (ref. 10) by one of
the authors (DWB), but afterwards was found to also be
used by workers at Los Alamos (ref. 33). The pressure

A
r

r
=

−
ρ

ρ 1
(35)

p p c u u A u u2 1 1 1 2 1 1 2 1
2= + − + −( )ρ ρ (36)

ψ =
−u u

c
2 1

1
(37)

ρ ρ
ψ

ψ

2
1

1
1

=
−

+ A

(38)

velocity relation of the linear solver, equation (30) is
modified with the addition of a quadratic term in the
velocity difference to yield equation (36). With the pres-
sure and velocity behind the shock known, the continuity
and momentum equations can then be used to obtain the
density behind the shock; the result is given in equa-
tions (37) and (38). The energy behind the shock is
obtained from equation (34), as was done for the linear
solver.

The third solver option is our “exact” shock solver, which
iterates to obtain the post-shock conditions. Using the
“exact” solver option, when ψ is less than 0.03, the code
defaults to the linear solver. The “exact” solver guesses
ρ2, limited by the values ρ1 and rρρ1 and uses the conti-
nuity, momentum, and energy equations to calculate p2,
u2, and e2. The EOS is then used to generate p'2(ρ2,e2).
ρ2 is then iterated until p2 equals p'2. The iteration is
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stopped when the number of iterations reaches 12 or the
normalized p2 error reaches 0.005, whichever occurs first.
Essentially no improvement was found during code
development by increasing the number of iterations to 24
and decreasing the acceptable p2 error to 0.001. Thus, the
accuracy given here is believed to be quite sufficient for a
shock wave solver used within a Riemann solver.

A set of code development checkout runs were made with
the impact of two polyethylene slabs at a closing velocity
of 20 km/sec. One of the slabs is backed by an infinitely
stiff plate. The outside surface of the other slab is free.
Thus, the problem produces two initial shock waves, one
reflected shock wave and a reflected expansion wave.
Exact solutions can readily be calculated for this problem
up to a certain point in  time. A large improvement in the
solutions was noticed when shifting from the linear to the
quadratic shock solvers described above. A smaller, but
still noticeable improvement in the solution was noticed
when shifting from the quadratic to the “exact” shock
solver. Hence, in the solutions presented herein, the
“exact” shock solver was always used. There is a penalty
in CPU time in shifting towards the better shock solvers.
For the slab impact code checkout runs, the run times
were found to be essentially in the ratio 1:2:4 for use of
the linear, quadratic, and “exact” shock solvers,
respectively.

We now move on to the method used to obtain a complete
Riemann solution, with all 4 (or 5) zones shown in fig-
ure 5. First, complete expansion waves are calculated
from the two initial zones 1 and 4 to see if the situation
with the minimum pressure zone of figure 5(b) exists. If it
does, then, at that point, the complete solution with all
waves and regions has already been found. In the vast
majority of cases, the minimum pressure zone is not
required and we have the situation shown in figure 5(a)
with four zones (though not, of course, necessarily with
the particular pair of waves—expansion/shock—shown in
the figure). The following procedure is then used to solve
the problem. Two linear (acoustic) p-u equations (similar
to eq. (30)) are written across the two waves between
regions 1 and 2 and also between regions 3 and 4. These
two equations are solved by setting u2 = u3 and p2 = p3 to
yield a value for u2 = u3. (The p2 =  p3 values are
discarded.) Then, the higher-order expansion and shock
solvers discussed above are used from u1 to u2 and also
from u4 to u3 to generate new values for p2 and p3, which
do not, in general, agree with each other initially. The key
to our procedure is the technique of selecting the updated
value of u2 = u3 to be used in the next iteration. This is
done by again solving a Riemann problem using the
acoustic p-u relations, but starting now from the previous
p2,u2 and p3,u3 conditions found using the higher-order
shock and expansion solvers. This leads to a new value

for u2 = u3. Once this new value of u2 = u3 is found, the
previous solutions for states 2 and 3 are completely
discarded and a new higher order set of calculations of
states 2 and 3 is made to the updated u2 = u3 values. This
procedure has been found to be exceedingly robust and to
converge very rapidly. The procedure is repeated until the
normalized error between p2 and p3 is less than 0.001 or
the iteration number is eight, whichever comes first. In
most cases, the procedure was found to converge in two
or three iterations. Again, increasing the iteration number
and improving the accuracy further were found to make
no perceptible difference to the solutions.

With the complete Riemann solution in hand, it now
remains to select the region in which the cell boundary
lies to calculate the flux across said boundary. Since the
cell and zone boundaries slide, in general, the line fol-
lowed by the boundary in question will usually not be ver-
tical in figure 3. (We will refer to this line as the “world
line” of the boundary in question.) If the world line of the
boundary is within one of the zones 1,  2,  3,  4, or 5, the
flux is simply calculated using the primitive variables for
that zones. Component mass fractions (and transverse
velocities, if a multidimensional solution were being car-
ried out) are simply those of region 1 or 4, depending on
whether the boundary world line is to the left or right of
the interface.

If the boundary world line lies within an expansion wave
system, an additional expansion integration is carried out
exactly to the world line to generate a new set of primitive
variables which are then used to calculate the fluxes. The
other option would be not to perform the extra integration
and to assign the boundary world line to one or the other
of the zones bounding the expansion wave depending on
whether the world line lay to the left or right of some
defined “middle” of the expansion wave. The fluxes
would then be calculated directly from the primitive vari-
ables in the chosen zone. We have found virtually no dif-
ference in the code performance between these two
techniques. Nevertheless, we have continued to use the
technique with the extra integration, since it is, in princi-
ple, more correct and adds only a fraction of one percent
to the CPU time requirements of the code.

3.4  Boundary Conditions

Calculation of the boundary fluxes comprises two compo-
nents. First, at each end of each zone, conditions (i.e., the
state vector, U) are calculated in a “ghost cell” which lies
just outside the zone. A brief discussion of the use of
so-called “ghost” cells is appropriate at this point. At both
ends of a zone, just outside the zone, one or more ghost
cells are added to the chain of real cells which form the
interior of the zone. The cell-center values of the ghost
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cells are chosen so that a Riemann solution between the
real and ghost cells straddling the zone-boundary repro-
duces the proper zone-boundary condition. The use of
ghost cells is extremely convenient when higher-order
interpolations/extrapolations must be made near the zone
boundary, since these can now be done essentially in the
same way as is done in the interior regions of the zones.
We now return to the main-boundary condition
discussion.

Using the U values in the ghost cells, as well as those in
the real cells of the zone(s), extrapolations/interpolations
are made to the zone boundary. The fluxes there are calcu-
lated using Riemann solver techniques analogous to those
used for the cell boundaries within a zone, as described in
section 3.3. There is a certain degree of freedom in choos-
ing the ghost cell values in a number of cases and this
freedom becomes much greater when two ghost cells are
used. For this reason, we have limited the code to the use
of only one ghost cell and hence, second-order
extrapolations/interpolations to the zone boundaries are
used under some conditions. In addition, for some bc used
only for code check-out, we have used cell-center (i.e.,
first order) values to calculate the zone-boundary fluxes.
Below, we will briefly go through the bc used in the code.

For the infinitely stiff wall at zero velocity bc (bc #1), the
ghost cell U (state variable) is created by taking the U of
the last, adjacent real cell in the zone and simply reversing
the velocity, i. e., replacing u by –u. For the point mass
projectile bc (bc #10), the ghost cell U is created by taking
the U of the last, adjacent real cell in the zone and replac-
ing u by 2uproj–u, where uproj is the projectile velocity.
For the free surface bc (bc #2), the ghost cell U is created
by solving a Riemann problem expanding to zero pres-
sure. Solutions of all Riemann problems involved in
determining the bc are done using the same techniques
already described in section 3.3. There are three bcs are
used for internal zone boundaries—moving boundary,
different media (bc # 4); fixed boundary, same media (bc
#5); and moving boundary, same media (bc #6). In all of
these cases, the ghost cell Us are created by solving a
Reimann problem between the two adjacent real end cells
of the two zones. For some of the preceding bcs, some of
the extrapolations/interpolations subsequently used to the
boundary in question to calculate the boundary fluxes are
of second order, rather than third order.

Four other bcs were used for code development and
debugging work. The nonreflecting outflow condition (bc
#3) sets the ghost cell U equal to that of the adjacent real
cell. The supersonic inflow bc (bc #7) keeps the ghost cell
U at a fixed value specified at the beginning of the CFD
solution. In the subsonic inflow bc (bc #8), the ghost cell
ρu and H = e + p/ρ + u2/2 are kept at specified, fixed val-

ues and a Riemann solution is performed between the
ghost cell and the adjacent real cell to determine com-
pletely the ghost cell U. Similarly, in the subsonic outflow
bc (bc #9), the ghost cell p is kept at a specified, fixed
value and a Riemann solution is performed between the
ghost cell and the adjacent real cell to determine com-
pletely the ghost cell U. For all of the preceding four bcs,
the extrapolations/interpolations subsequently used to the
boundary in question to calculate the boundary fluxes are
first-order (i.e., cell center) values.

For the blind end of the breech, bc #1 is used. For both
sides of the piston, bc #4 is used. For the main
diaphragm/projectile base condition, bc #1 is used before
rupture. After rupture, bc #10 is used for point mass pro-
jectiles and bc #4 for projectiles with an internal zone and
celling. For the free surface of an internally zoned projec-
tile, bc #2 is used. If there is an extra diaphragm in the
pump tube, bc #1 is used there before break and bc #6
after break.

3.5  Multiple Zoning

The computational domain is divided into several zones.
Regions of different media, i.e., gunpowder (plus powder
gas), polyethylene piston material, hydrogen pump-tube
gas are always kept in different zones, to avoid the EOS
difficulties that would occur if two different media
co-existed in one cell. This problem is avoided by sliding
the grids so that the grid zone boundaries move with the
media boundaries. In some cases, more than one zone can
be used for a single media, in particular, with the pump-
tube gas. The gridding zones must, of course, change size
in “accordion” fashion to follow the expansions and con-
tractions of the media zones as the gun cycle progesses.

The cell sizes are arranged so that across a zone boundary,
the zone end cell sizes are equal. This is done as follows.
Every second zone has its cell sizes calculated at each
time step independently of all other zones. Then the
remaining zones have their end cell sizes calculated to
match the end cell sizes (already calculated) immediately
across the zone boundaries. Three methods of calculating
the cell sizes are available for the first set of zones
(calculated independently of all other zones). The first
two are: (1) uniform cell sizes and (2) cells increasing (or
decreasing) in size by a given, constant ratio from one end
to the other of the zone. Method (3) is a combination
technique. A critical cell size is chosen. If the zone length
divided by the number of cells is less than this size, uni-
form cell sizing is chosen. If it is greater than this length,
the cell size at a chosen end of this zone is set to the criti-
cal size and, moving away from this cell, the cell sizes
successively increase by a ratio chosen to exactly fill the
zone with cells. This ratio varies with every timestep. The
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purpose of this complex zoning technique is (a) to allow
such a zone to keep a reasonably small cell size (to obtain
adequate resolution) at one end when the zone is greatly
expanded and (b) to avoid extremely tiny cells and the
consequent great reduction in code timestep when the
zone is greatly compressed.

The remaining zones are calculated either by method
(4) or method (5), as follows. In method (4), if the zone is
an end zone, it is calculated with geometrically increasing
(or decreasing) cell sizes from one end to the other (con-
stant size ratio between adjacent cells). By adjusting the
size ratio between adjacent cells, the cell size at the end of
the zone abutting the neighbor zone can be adjusted to
match that of the end cell of that zone. This size ratio
varies with every timestep. If the zone is between two
other zones, the previous technique does not provide
sufficient degrees of freedom to match the end cell sizes
across both zone boundaries. This problem is resolved by
using method (5)—zoning the region with two different
subregions each with geometrically varying cell sizes with
two different size ratios between adjacent cells for the two
regions. With two different size ratios available to vary,
one can match the end cell sizes across each zone
boundary of the zone and across the boundary between
the two subregions.

The type of zoning must be selected by the program
operator. For a three-zone (gunpowder, piston, and hydro-
gen) two-stage gun solution, good results have been found
with the following zoning methods: gunpowder, method
(4); piston, method (1); and hydrogen, method (4).  For a
four-zone (gunpowder, piston, hydrogen #1, and hydro-
gen #2) two-stage gun solution with an extra diaphragm in
the pump tube between the two hydrogen zones (ref. 11)
good results have been found with the following zoning
methods: gunpowder, method (4); piston, method (1);
hydrogen #1, method (5); and hydrogen #2, method (3).

3.6  Piston Jam Versus Bounce

The amount of friction calculated in the CFD code on the
piston in generally not enough to prevent the piston from
bouncing back after maximum gas compression. For our
operating conditions of the NASA Ames 1.5 in. gun, it is
observed that the piston, in fact, jams in the high-pressure
coupling rather than bounces. To account for this, an
option is available in the code which changes the bc at the
piston front to the infinitely stiff wall at zero velocity bc
#1 in section 2.7 (on both sides of the zone boundary)
when the velocity of the piston front reaches zero. Most of
the two-stage gun solutions presented herein use this
option. It will be shown that this option produces excel-
lent agreement between theory and experiment. The
behavior of the piston exposed to high pressures appears,

as will be discussed at a later point, to be very poorly
understood and to disagree very substantially with low
speed measurements of the yield stress and Young’s
modulus of the piston material.

4  Code Validation Versus Analytical
Solutions

The code validation consists of two parts—validation
against analytical solutions and validation against data
from actual two-stage gun firings. In this section, we will
outline the validations performed against given analytical
solutions.

4.1  Riemann’s Shock-Tube Problem

The first-validation work is against analytical solutions
for Riemann’s shock-tube problem. Figure 6 shows (a) the
initial configuration with the high-pressure driver tube,
the low-pressure driven tube and the diaphragm and (b),
the x-t wave diaphragm. Upon rupture of the diaphragm,
an expansion wave system moves into the driver-tube gas
and the incident shock wave, followed by the driver-
driven gas interface moves into the driven tube. The inci-
dent shock wave subsequently reflects from the driven-
tube end wall, as shown. As far as is shown in figure 6,
the wave processes can be modelled exactly analytically
and thus serve as an excellent test for the CFD code.

The Riemann problem modelled analytically and by the
CFD code used ideal gases, included no wall-friction or
heat-transfer effects and had the following parameters:

Molecular weight = 2

Specific heat ratio = 1.4

Temperature = 700 K

Pressure = 6.898 × 108 dynes/cm2

Length = 2100 cm

Driven tube/driven gas –

Molecular weight = 29

Specific heat ratio = 1.4

Temperature = 295 K

Pressure = 8.669 × 105 dynes/cm2 (or 
   fraction thereof)

Length = 2600 cm

With Riemann’s shock tube problem, we can compare the
analytical and CFD code solutions for the (1) incident
shock, (2) the driver rarefaction, and (3) the reflected
shock.
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Figure 6.  Riemann’s shock-tube problem. (a) Shows initial configuration with driver and driven tubes and diaphragm;
(b) shows x-t wave diagram.

CFD solutions were carried out with 20 cells each in the
driver and driven tubes for the above pressure ratios (Rp)
of (approximately) 103, and also, by reducing the driven
tube pressure by successive factors of 10, for pressure
ratios of (approximately) 104, 105, and 106. The solutions
were then compared with exact analytical results. The
CFD solutions were excellent at Rp = 103, showed modest
deterioration at Rp = 104 and progressively more serious
deterioration at Rp = 105 and 106. As an example of dete-
rioration, the peak-to-peak amplitude of the pressure
oscil lations behind the incident shock in the Riemann
shock tube problem was 1–2 percent for Rp = 103

and 104, 10 percent for Rp = 105 and 40 percent for
Rp = 106. Nevertheless, the code was robust in that it pro-
duced solutions at Rp up to 106 with only 20 cells per
zone, and that the degradation of the solutions as Rp
increased from 104 to 106 took place in a smooth, consis-
tent fashion. The number of cells per zone was then
increased to 40 and to 80. With 80 cells per zone, the
solutions were now excellent for Rp of 104, and the rather
large entropy (temperature) errors of the solutions for Rp
of 105 and 106 with 20 cells per zone were much reduced.
For example, (spurious) oscillations in temperature in the
reflected shock region for Rp = 106 were reduced from

67 percent to 17 percent when the number of cells was
increased from 20 to 80. At the same time, the oscillations
behind the incident shock referred to earlier were reduced
from 40 percent to 12 percent (for Rp = 106). Finally, we
switched from uniform cells in the driven gas to having
these cells decreasing in size by a constant ratio from the
end wall to the interface. With an overall decrease in cell
size within the zone by a factor of 36, still further
improvements in the solution for Rp = 106 were obtained.
The CFD code issues discussed above regarding the
Riemann shock tube problem are very similar to those
presented in reference 34 for solutions with between 200
and 3200 cells (total).

4.2  Plate-Slap Problem

In this problem we consider two plates of polyethylene
impacting each other at a closing velocity of 20 km/sec.
One plate (the anvil) is initially at rest and is backed by an
infinitely stiff wall. The rear surface of the moving plate
(flyer) is completely free. Figure 7 shows (a) the initial
configuration with the flyer, anvil, and infinitely stiff wall
(b), the x-t wave diaphragm. Upon impact of the flyer and
the anvil, shock waves are created in both. The anvil
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Figure 7.  Plate-slap problem. (a) Shows initial configuration with flyer, anvil, and infinitely stiff wal;, (b) shows x-t wave
diagram.

shock wave reflects as a shock wave from the infinitely
stiff wall and the flyer shock wave reflects as a complete
centered rarefaction wave system from the flyer free sur-
face. Again, as far as is shown in the figure, the wave pro-
cesses can be modelled exactly analytically and thus serve
as an excellent test for the CFD code.

The dense media EOS #3 (see sec. 2.2) is used for the
polyethylene. This test case allows study of (1) the initial
pair of shock waves in both plates, (2) a shock wave
reflected from the infinitely stiff wall, and (3) a complete

expansion wave reflected from the free surface. Compar-
isons were again made between the CFD code solutions
and exact analytical solutions. Solutions were carried out
with a total of 40, 80, and 160 cells. The solutions were
excellent, especially for the cases with 80 and 160 cells.
Some small wiggles, of the order of 2–3 percent, were
observed immediately downstream of shock waves, but
quickly damped out, and some entropy errors
(5–10 percent maximum density error) were created
where the shock waves were created or reflected.
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Otherwise, the solutions were very accurate, with all
shock- and expansion-wave velocities and pressures very
well predicted.

4.3  Convergent-Divergent Nozzle

In the preceding code validations, the cell area has been
constant, i.e., the solution has been completely one-
dimensional. To test the code with area changes, we
examine steady, frictionless flow of ideal air through a
convergent-divergent nozzle. The nozzle area decreases
by a factor of 16 to the throat and then increases by a fac-
tor of 16 back to its original area. The total length of the
portion of the nozzle with area variations is 32 cm and the
nozzle diameter varies from 10 cm to 2.5 cm and then
back to 10 cm. The CFD code calculation was done with
90 cells filled with air. Both air and cells are pushed
through the nozzle by pistons located upstream and down-
stream of the nozzle. The air does not move with the same
velocity as the cells, since this is not a Lagrangian code.
The initial cell conditions are set to the exact quasi-one-
dimensional solution and then about 40 cells are pushed
through the nozzle. The solution is re-examined against
the exact quasi-one-dimensional solution to assess code
accuracy. (Some of the cells make a complete traverse of
the portion of the nozzle with area changes.) The ideal
pressure ratio across the nozzle is about 300 to 1 and the
exit Mach number is about 4.5.

The errors were assessed primarily by evaluating the
entropy and enthalpy throughout the nozzle. The maxi-
mum enthalpy (or temperature) error was 0.5 percent and
the maximum entropy error was ∆S/R = 0.02, which
would correspond to a pressure error of 2 percent. This
was judged very satisfactory for a nozzle with a pressure
ratio of 300. With half as many cells, the errors are con-
siderably larger, with a maximum enthalpy error of
2.7 percent and a maximum entropy error of ∆S/R = 0.17.

4.4  Gunpowder Burn

Gunpowder burn in the CFD code within a closed bomb
with 10 cells was compared with results obtained from a
very highly accurate (small timestep) direct (non-CFD)
integration of the powder-burn equations. In both calcula-
tions, the shape of the powder grain changes as it is con-
sumed. All results agreed within 0.5 percent between the
two sets of calculations.

4.5  Friction and Heat-Transfer Calculations

No simple analytical solutions are available against which
to test the friction and heat-transfer calculations. How-

ever, special checks were made of the friction and heat-
transfer calculations for gases and dense media and of the
nonequilibrium turbulent kinetic energy calculation for
gases, as follows. For each of these calculation tech-
niques, for one cell, for one timestep, a complete hand
calculation was made to six decimal places and the results
compared with extensive special diagnostic print-outs
from the CFD code. A few errors were found in this way
and were corrected.

5  Code Validation Versus Actual Gun Data

Sections 5.1–5.5 discuss mainly code validation with
experimental data from actual two-stage gun firings. Sec-
tion 5.6 discusses mainly important predictions made by
the code which we cannot, at present verify experimen-
tally, such as the pressure histories in the high-pressure
section of the gun and at the projectile base. Finally, sec-
tion 5.7 discusses apparent anomalous yielding and
deflection behavior of the pump-tube piston.

5.1  Gun Configuration and Operating Conditions

Figure 8 is a sketch (not to scale) showing the dimensions
of the Ames 1.5 in. gun (with the benchmark piston) as
modelled in the CFD code. The high-pressure coupling
contraction is actually modelled with two cones with a
slight break in the slope at the 3358.58 cm station at a
diameter of 11.35 cm. This is not shown in figure 8 for
clarity. However, using two cones models the actual mea-
sured contraction dimensions considerably better than if
only one cone is used. Table 1 gives the benchmark oper-
ating conditions of the gun.

Figure 9 shows (a) the real piston and (b) the one-
dimensional piston used in the CFD code.

The one-dimensional piston has the same land lengths and
land and shank diameters as the real piston and its length
has been adjusted so that its mass is equal to that of the
real piston.

Table 2 summarizes the experimental and CFD data for a
number of shots of the Ames 1.5 in. gun. The rupture
pressures of the break valves (diaphragms) were calcu-
lated according to reference 35. Shots 600-607 (omitting
shot 604) were at nominally identical gun operating
conditions. The data from these shots were averaged to
produce an “average” shot listed as “AV. 600–607” in the
table. The powder-energy release, the powder-burn rate
and the piston friction were adjusted to match the
observed powder-chamber pressure histories and the pis-
ton velocity.
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Figure 8.  Gun modelled in CFD study. Not to scale. All dimensions are in centimeters. Station numbers are distances
from blind end of breech. DIA denotes diaphragm (break valve).

Table 1. Ames 1.5 in. benchmark gun operating conditions

Powder Hercules HC-33FS
Powder mass 3000 gm
Piston material High-density polyethylene
Piston mass 21,420 gm
Pump-tube hydrogen pressure 3.104 bar
Break-valve break pressure 1216  bar
Sabot material Lexan
Total launch mass 29.7 gm
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Figure 9.  Representative pump tube piston for NASA Ames 1.5 in. gun (not to scale). Dimensions in centimeters.
(a) Actual piston; (b) one-dimensional piston for CFD code.
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Table 3. Selection of powder and piston parameters

Gun Ames 1.5 in. Ames 0.28 in.

Powder

Maker Hercules Du Pont/IMR
Type HC-33FS 4227
Energy factor 0.97 0.97
Burn rate factor 1.891 1.581

Piston friction model

Lands included No Yes
Land diameter N/A 0.235 × actual + 0.765 × bore
Friction coeff. factor 0.396 1

5.2  Selection of Powder and Piston Parameters

Table 3 shows the parameters chosen for the Ames 1.5 in.
and 0.28 in. guns. In the “powder” section of the table, the
first-two lines give the maker and the type of the powder.
The next line gives the energy factor—this is the factor by
which the powder energy release calculated from the
manufacturer’s data (see sec. 2.6) must be multiplied to fit
the experimental data. Next is given the burn rate factor—
this is the factor by which the powder burn rate given by
the manufacturer (see sec. 2.6) must be multiplied to fit
the experimental data.

As mentioned above, the powder energy release, the
powder burn rate and the piston friction were adjusted to
match the observed powder chamber pressure histories
and the piston velocity. Matching of the powder-chamber
pressure history was made to the pressure rise and to the
pressure fall from maximum to about 1/3 of the maximum
value. The adjustment of these parameters requires the
insertion of “fixes” into the code and we will now outline
the reasons why we believe these are necessary. The
adjustment of the powder energy release is very small
(3 percent) and is the same for both types of powder and
may possibly represent incomplete burning of the powder.
It is also necessary to point out that fits to the
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experimental data that are almost as good as those
obtained here are probably obtainable with no adjustment
to the powder energy release. It is suggested that the
powder energy factor be taken to be between 0.97 and 1.0.

On the other hand, the burn rate parameter is much
greater than unity (1.58–1.89) and is quite different for the
two powders studied. There is a feedback mechanism in
that higher burn rates raise the powder-chamber pressure
which, in turn, causes still further increases in the burn
rate. Hence, a burn rate parameter increase from 1.0 to,
say, 1.7 produces a much larger relative increase in cham-
ber pressure. The upshot of this is, that if one uses the
burn rates given by the powder manufacturers in the code,
the chamber pressure bears almost no resemblance to that
actually observed, yielding a peak pressure only half (or
less) than that observed and a pressure history very unre-
alistically stretched out in time.

Two effects likely contribute to the increased burn rate
(over that predicted using the powder manufacturers’
specified constants in equation (10) in sec. 2.6) in our
two-stage gun breeches. First, the maximum pressures in
the breeches of Ames’ two-stage guns range from
400–1000 bar, whereas in typical military gun systems,
the maximum pressures are often 3000 bar or higher
(ref. 36). The manufacturers’ burn-rate parameters are
obtained from closed bomb or strand-burner tests and they
are usually made (ref. 30) to emphasize the pressure range
of 600 to 2000–2700 bar which is more applicable to mili-
tary weapons. Some of the gun propellants for which data
is given in references 30 and 37 show anomalies in the
pressure range of 400–1000 bar which would translate to
higher burn rates at these pressures than those which
would be predicted by the powder manufacturers’ equa-
tions. This point is also discussed in reference 38. Stated
another way, it is possible that the manufacturers’ burn-
rate expressions may not be very applicable to the rela-
tively low breech pressures of our two-stage guns.

A second effect is that in guns, there is gas flow over the
propellant grains and the resulting increases in convective
heat transfer cause corresponding increases in the burn
rate (“erosive burning”) over those which would be mea-
sured in closed vessels and are the usual basis of the
manufacturers’ burn rate equations. This point is dis-
cussed further in reference 39.  The benchmark burn rate
in our code is the standard expression given by the pow-
der manufacturer. Further, the code, by choice, does not
include the calculation of any erosive burning effects. The
burn rate must be increased substantially above that given
by the powder manufacturer in order to match the actual
observed powder-chamber pressure histories. This is
likely a result of the two effects discussed above. The fac-
tors of rate increase (“burn rate factor”) observed to pro-

duce good agreement between theory and experiment for
the two powders used in the Ames 1.5 in. and 0.28 in.
guns (see table 3) were 1.89 and 1.58. Based on these
numbers, it is recommended, in fitting a new powder in a
new gun using our code, that one start with a burn rate
factor of about 1.75 and iterate in to make the experimen-
tal and CFD powder-chamber pressure histories and the
piston velocities agree.

In addition, the piston motion in the pump tube was
found, in general, to take place as though the piston fric-
tion was substantially less than that calculated as dis-
cussed in section 2.5 and Appendix C. The real piston
behavior can be much more accurately modelled by
adjusting parameters in the piston model. One may
(1) reduce the land diameter to reduce the jamming forces,
(2) remove the lands entirely, or (3) reduce the coefficient
of friction of the piston material against the steel pump
tube. As indicated in table 3, for the 1.5 in. gun piston, the
lands were removed entirely and the coefficient of friction
was reduced to 0.396 times the normal values which
would be used according to the models of section 2.7 and
Appendix C. For the  0.28 in. gun, the land diameter was
reduced as indicated in the table, but the friction coeffi-
cient was not changed from its normal value. [One should
note here that the (room temperature) land diameter is
greater than the tube bore and the pistons are inserted into
the pump tube after having been cooled in a freezer and
then are allowed to come up to room temperature and
expand and jam in the pump tube.] The two methods cho-
sen to reduce the piston friction shown in table 3 differ for
historical reasons only—there is no reason to prefer one
over the other.

There are a number of major difficulties in modelling the
piston friction. First, the piston land surface may melt,
reducing the friction coefficient below that used in the
model (sec. 2.5 and App. C). Second, the lands will wear
away progressively, thereby reducing the land jam in the
pump tube, over the course of the piston stroke. Both of
these phenomena are very difficult to model. Third, there
is considerable evidence (see sec. 5.7) that the high strain
rate deflection and yielding behavior of the piston mate-
rial is very different from that predicted using material
parameters measured in low strain rate situations. These
latter parameters are used in our model (following ref. 4),
lacking any data on high strain rate deflection and yield-
ing behavior of the piston material. In general, the exper-
imentally observed behavior of the piston indicates a sub-
stantially lower friction drag force than that which would
be calculated applying the model of section 2.5 and
Appendix C, directly, without modification. For the two
guns modelled, the piston of the larger gun requires a
much greater modification (reduction) in the calculated
piston friction force to match the experimentally observed
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data. This may be due to the greater relative precision and
smoothness of both the piston surfaces and the pump tube
bore. This would tend to occur since the surface finishes
and manufacturing tolerances tend to be nearly constant,
regardless of component size. Hence, for a gun bore
which is about five times larger (the Ames 1.5 in. gun),
the surface finishes and tolerances, normalized to the gun
dimensions, are about five times better.

To reduce the piston friction to obtain agreement between
CFD and experimental data for a new gun using our code,
it is suggested to reduce the piston land diameter and the
piston material friction coefficient as discussed above and
shown in table 3. Since there are wide differences in the
amounts of friction reduction required to obtain a good
match between CFD and experiment and since piston
friction is so poorly understood, we do not recommend
even a first guess of how much to reduce the friction coef-
ficient to model a new gun. This must be determined on a
case by case basis. We point out that in determining the
burn-rate factor and the piston friction reduction to be
used with our code for a new gun, both parameters must
be varied to get good agreement between the CFD and
experimental chamber pressure histories and piston veloc-
ities. Typically, about 10 runs must be made with well
chosen parameters to obtain good matches. It is suggested
that a single, well documented, gun operating condition be
chosen against which to adjust the burn rate factor and the
piston friction reduction and that thereafter, these parame-
ters be kept constant (for a given gun and powder type).

The performance of the gun is very sensitive to the piston
velocity and hence to the piston friction. Thus, the deter-
mination of the burn rate factor and the piston friction
reduction, as discussed above, are very important to
enable one to obtain good code predictions. It turns out
that the performance of the gun is very insensitive to the
method of calculation of projectile friction (within rea-
sonable limits). We have made CFD runs with nominal
projectile friction, twice nominal projectile friction and
zero projectile friction and the muzzle velocities were
essentially identical for all three cases. This is believed to
be due in part to the fact that average pressures acting on
the projectile are much larger relative to the friction forces
than those acting on the piston. (For much of the piston
stroke, the pressures on both sides of the piston are quite
low.) A second effect is as follows. When the projectile
friction is increased arbitrarily (say, doubled), the first
part of its trajectory is traversed at a lower velocity, as
expected. However, it then stays closer to the high-
pressure gas reservoir for a longer time, permitting the
pressure waves from the reservoir to catch up to it more
effectively than if it moved off more rapidly (with lower
friction). The result is that, with the increased friction, the
projectile is accelerated more effectively in the later part

of its in-barrel trajectory. The overall result appears to be
a near independence of muzzle velocity over a fairly wide
range of assigned projectile friction values (within
reasonable limits), as mentioned above. The calculations
presented herein for the Ames 1.5 in. gun were made with
the projectile diameter set exactly equal to the barrel
diameter, and this is suggested as a starting point when
applying our code to a new gun configuration.

5.3. Code Validation with Data from the Ames 1.5 in.
Gun

As mentioned in the preceding section, the powder energy
factor, the powder burn rate factor and the piston friction
were tuned to make the powder-chamber pressures histo-
ries and piston velocities, calculated using the CFD code,
match those for the benchmark gun operating condition,
which is that of the average of shots 600–607 (see
table 2). From this table, we see that the CFD piston
velocity, in fact, is within 0.3 percent of the mean experi-
mentally observed value, as would be expected, since it
was tuned to agree. Figures 10 and 11 show the experi-
mental and CFD powder-chamber pressure histories. The
experimental data is for shot 607. Figure 8 shows the pres-
sure histories out to 22 msec and figure 11 shows the his-
tories out to 62 msec with a logarithmic pressure scale.
Bit noise becomes progressively more evident in the
experimental data as the pressure decreases. The
pressure difference corresponding to one bit is about
1 × 107 dy/cm2. The horizontal “lines” in the exper-
imental data of figure 11 are due to switching between
several bit levels; with the very large number of experi-
mental data points (15,000), the data points merge into
apparently solid lines. The matching of the pressure
histories by the adjustment of the powder parameters and
piston friction was done only out to a time of about
15 msec. The excellent agreement of the pressure histories
out to pressures an order of magnitude lower and times
out to 62 msec represent part of the validation of the
accuracy of the code.

An important validation of the code is the comparison of
the experimental and CFD projectile muzzle velocities.
These are given for the benchmark gun operating condi-
tion (the line marked “AV. 600-607”) in table 2. The CFD
and experimental results agree within 0.5 percent. It is
important to realize that the CFD projectile muzzle veloc-
ity was not tuned in any way, as was the CFD piston
velocity. It simply results directly from the CFD analysis.

The code was also validated by comparing CFD predic-
tions and experimental measurements in the pump tube
made at station 3179.1 cm (see fig. 8) in the tube. The
measurements were made using a PCB model 119M39
pressure transducer and a Kistler model 566 charge
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Figure 10. Experimental and CFD powder-chamber pressure histories.

Figure 11. Experimental and CFD powder-chamber pressure histories.

amplifier, as were the measurements of the powder-
chamber pressure.  Figures 12 and 13 show the
experimental and CFD pump-tube pressure histories. The
experimental data is for shot 607. Figure 12 shows the
pressure historiesfrom 20 to 65 msec with a logarithmic
pressure scale and figure 13 shows the histories from 48
to 57 msec. Bit noise is particularly evident in the lower
pressure ranges of figure 12. Six shock waves appear in

the experimental pressure trace up to the time that the
piston covers the transducer and all six waves are very
well predicted by the code, with timing errors of perhaps
1–1.5 msec for the first wave, 0.5 msec for the next two
waves and 0.2–0.3 msec for the last three waves. Many
details of the pressure history are very well captured, such
as gradual pressure rises between waves 3 and 4 and 4
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Figure 12. Experimental and CFD pump-tube pressure histories.

Figure 13. Experimental and CFD pump-tube pressure histories.

and 5 (between 49 and 54.5 msec) and the curved
“hooked” shape of wave 5 (at about 54.8 msec).

The experimental pressure levels are consistently about
15 percent higher than the predictions. It is believed that
this is a transducer calibration problem, rather than any
code difficulty. For example, if the code were that far off,
the timing of the waves would be very much in error and

other predictions of the code, such as projectile muzzle
velocity, would also be substantially in error. The tran-
ducer calibration factor could be in error because (1) we
are using a 6900 bar transducer at a maximum pressure of
150 bar, and it is known that over such a wide pressure
turn-down ratio, there can be some changes in the trans-
ducer calibration factor and (2) we are using an
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unconventional transducer measuring system, with a PCB
transducer and a very old Kistler charge amplifier. It is
possible that there is some uncertainty in the capacitance
of the system, which would alter the transducer calibration
factor. It would obviously be desirable to do a head-to-tail
in situ calibration of the transducer set-up, but neither
time nor money to perform this has been available to date.

The code also makes predictions of where the pump-tube
piston ends up in the converging high-pressure section of
the gun. The real piston initially has a conical hole in its
forward end, as shown in figure 9(a). By the time the pis-
ton ends up jammed in the high-pressure section of the
gun, this hole is very much elongated and the forward end
of the piston typically separated into several fingers. We
have measured the final dimensions of two pistons and
from these have determined the axial stations (in the
co-ordinate system of fig. 8) of (1) the ends of the solid
parts of the pistons and (2) the ends of the plastic fingers.
Figure 14 is a sketch of one-half of the high-pressure sec-
tion of the gun, in which are shown the experimentally
measured stations of the piston data and the CFD pre-
diction of the final position of the end for the one-
dimensional solid piston. (The two experimentally mea-
sured positions of the ends of the fingers fall on top of
each other in fig. 14.) The code prediction is excellent, in
that it falls roughly mid-way between the experimentally
observed ends of the solid part of the piston and the ends
of the fingers.

The comparisons of the CFD and experimental data for
the Ames 1.5 in. gun presented up to this point have been
for one operating condition, that of the average of shots
600-607 in table 2. In the current test series, the gun has
been fired at several other operating conditions (i.e., for

shots 613–618) and data for these shots (excluding
shot 617) are presented in table 2. Below, we make some
limited comparisons from the data for the benchmark
mean condition (“AV. 600–607”) and shots 613–618 in
table 2. (We note here that for shots 616–618, two
sections of pump tube were removed, reducing the pump
tube volume by about 33 percent and the pump-tube fill
pressure was increased to maintain the same mass of
hydrogen as for shots 600–607.) Figure 15 shows the
comparison of the CFD and experimental piston velocities
for these six conditions, along with the ideal perfect
agreement  line. The agreement is very good. The
predictions are, of course, tuned to agree at the 685 m/sec
point. For the other five data points, the errors are
0.8–1.0 percent (6–7 m/sec) for three points and about
1.5 percent (11 m/sec) for two points.

Figure 16 shows the comparisons of the CFD and experi-
mental projectile muzzle velocities for the five of the six
test conditions for which piston velocity data is shown in
figure 15. The comparison for shot 615 is not shown, for
the following reason. For this shot, for reasons of avail-
ability, a diaphragm much thicker than usual was used.
Upon disassembling the gun after the shot, it was apparent
that, after rupture, the thicker diaphragm throttled the flow
significantly just aft of the initial position of the projectile
base. This is believed to be the reason for the very low
experimental muzzle velocity for this shot (6.3 km/sec
versus a CFD prediction of 6.95 km sec). Hence, the data
for this shot is not shown in figure 16. For the usual
diaphragms, there is no throttling effect, since adequate
diaphragm relief is machined into the barrel for 1–2 cal-
ibers downstream of the diaphragm station.

Figure 14.  Experimental and CFD predictions of final position of end of piston.
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Figure 15.  CFD and experimental piston velocities for the Ames 1.5 in. gun.
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Figure 16.  CFD and experimental projectile velocities for the Ames 1.5 in. gun.

The point at 6.73 km/sec is the point for the condition
“AV. 600-607” in table 2. Agreement between theory and
experiment is almost perfect for this point, as has been
previously noted. The two points with experimental veloc-

ities of 6.82 km/sec (for shots 613 and 614) show velocity
errors of about 3 percent (0.18 km/sec). For these same
two points, the experimental piston velocities were about
1 percent low (see fig. 13). The muzzle velocity is known
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to be extremely sensitive to the piston velocity and the
1 percent error in the latter velocity would lead to muzzle
velocities 2–3 percent low. The remaining two data points
show errors of 0.1 percent and 1.8 percent. Overall, the
agreement between the CFD predictions and the experi-
mental data was judged to be very good.

5.4  Code Validation with Data from the Ames 0.28 in.
Gun

Data for a number of shots with the Ames 0.28 in. gun are
given in table 4. A wider variety of gun operating
conditions are represented here than for the data for the
1.5 in. gun (see table 2). Piston masses of 155, 205, and
222 grams and powder loads of 34, 40, and 50 grams were
used. Three of the shots (shots no. 592, 594, and 596) had
an extra diaphragm inserted in the pump tube to attempt to
improve gun performance (see ref. 11). Projectile and pis-
ton velocities were not successfully obtained for all shots.
The first CFD modelling using the present code was done
for shots 577–579. However, the code contained an error
at this point which caused an error in the projectile veloc-
ities, but did not affect the piston velocities. Hence, the
comparison of projectile velocities is omitted for these
three shots. The break valve rupture pressures shown in
table 4 were calculated using the methods of reference 40.
For the corresponding CFD calculations, these pressures
were doubled in an attempt to allow for increases in yield
and ultimate strength due to high strain rate effects (see,
for example ref. 41). This is now no longer our preferred
method of calculating rupture pressures of the break
valves. We now use, instead, the method of reference 36
(as mentioned earlier) and use the value so calculated
directly (without doubling) in the CFD calculations.

Figure 17 shows the comparison of the experimental ver-
sus CFD piston velocity data from table 4. Overall, the
agreement, over a wide range of operating conditions, is
very good. Eight data points are shown; for five of the
points, the errors are less than 2.5 percent, one point has
an error of 3 percent and two points have errors of about
4 percent.

Six sets of projectile velocity data are shown in table 4.
For two of these shots (shots 592 and 593), the experi-
mental velocities are very low, nearly 1 km/sec below the
CFD predictions. These two projectiles were known to
have somewhat undersize diameters and it is believed that
this resulted in massive gas blow-by past the projectiles
and, hence, the low muzzle velocities. The projectile
diameters for shots 584 and 594–596 were much closer
fits to the barrel diameter. The projectile velocity data for
these four shots are plotted in figure 18. The experimental
values run, in general, about 4 percent below the CFD
values. To allow for this, we have plotted the line
(experimental muzzle velocity) = 0.958 × (CFD muzzle
velocity) on the graph (dashed line). The data points fall
within 2 percent of this line, indicating that the code pre-
dicts the variations of gun performance quite well, once
the overall 4 percent difference is allowed for. The
0.28 in. gun has a history of not shooting as well as other,
larger, guns at Ames. This may, perhaps, be due to the
occurrence of a certain amount of gas blow-by even for
the best projectiles. This, is turn, may be due to the
inevitably poorer machining tolerances and finishes which
will occur, relative to the gun size, for a small gun, since
these tolerances and finishes tend to have fixed absolute
values.
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Figure 17.  CFD and experimental piston velocities for the Ames 0.28 in. gun.
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5.5  Summary of Code Validation with Actual Gun
Data

In this section, we sum up the validation of the code
against experimental data from the Ames 1.5 in. and
0.28 in. guns. The validations were presented in detail in
the two preceding sections. The first set of validations
were for data at the benchmark operating condition of the
Ames 1.5 in. gun (shots 600–607 in table 2). The valida-
tions consisted of comparisons of the following CFD and
experimental data:

(1) pressure histories in the powder chamber,

(2) pressure histories in the pump tube,

(3) projectile muzzle velocity, and

(4) final position of end of pump-tube piston.

As described, agreement between the CFD and experi-
mental data was excellent for all of these variables.

The second set of validations consisted of comparing CFD
and experimental piston and projectile velocities for a
number of different piston masses and powder loads for
two very different guns—the Ames 1.5 in. and 0.28 in.
guns. Data for a greater range of operating conditions
were available for comparisons with the 0.28 in. gun.
Very good agreement was found between theory and
experiment for piston velocities. Projectile velocities were
very well predicted (errors of 1–3 percent) for the Ames
1.5 in. gun. For the Ames 0.28 in. gun, the experimental
projectile velocities were about 4 percent low. The small
gun has a history of relatively poor performance and it is
felt that this may be due to gun tolerance problems and
possible blow-by of gas past the projectile which is not
modelled by the code.

Overall, the validation of the code against actual gun data
was judged to be very good.

5.6  Other Predictions of CFD Code

In this section, we present a number of code predictions
which illustrate the usefulness of the code in (1) under-
standing phenomena within a two-stage gun and
(2) choosing more favorable gun operating conditions (for
example, lowering maximum gun and projectile base
pressures while maintaining muzzle velocity). We are not
currently able to make any direct measurements within
certain key regions of our guns (i.e., high-pressure section
and barrel), so the code’s ability to give an “X-ray” pic-
ture of the internal fluid dynamics of the gun is very valu-
able for optimizing gun operating conditions. All of the
predictions discussed in this section are from the CFD
calculation for the benchmark gun operating condition of
shots 600-607 in table 2.

Figure 19 shows CFD position and velocity histories of
the front of the pump-tube piston. The piston accelerates
in an s-shaped curve up to its maximum velocity of about
700 m/sec and then decelerates much more rapidly in the
high-pressure section of the gun. As the piston enters the
contraction section of the gun and is decelerating as a
whole, there is some tendency for re-acceleration of the
front end of the piston, due to the rapid area reduction.
For the case of figure 19, this appears only as a small kink
at a velocity of 540 m/sec, but for other, more violent
operating conditions, this can result in a significant
re-acceleration, for example, from 700 to 1000 m/sec.

Figure 20 shows the CFD pressure histories at two sta-
tions (3355.033 and 3380.127 cm) in the high-pressure
section of the gun. These stations are located at about
35 percent and 65 percent of the way along the contrac-
tion (see fig. 8). A series of waves reflects between the
front of the piston and the diaphragm (or the projectile
base, after diaphragm rupture). These can be seen in the
pressure histories of figure 20, up to pressure levels of
about 2000 bar (also in figs. 12 and 13). Note the very
high (6000–7000 bar) pressures calculated to occur in the
high-pressure section of the gun. Obviously, limiting the
maximum pressures reached here (and elsewhere in the
gun) would be very desirable to obtain long component
lifetime. By a judicious selection of gun operating condi-
tions, it is possible to reduce the maximum pressures,
while maintaining muzzle velocity, or, conversely, muzzle
velocity can be increased while maintaining the maximum
pressure levels in the gun.

Figures 21 and 22 show pressure snapshots at five differ-
ent times during the gun-firing cycle. The two figures are
identical except for the expanded time scale of figure 22.
The three vertical dashed lines represent the position of
the contraction of the high-pressure section of the gun.
The outside two lines represent the beginning and end of
the contraction (as modelled in the CFD code, see
sec. 5.1) and the middle line in the slight break in the
slope of the contraction. The intervals between the snap-
shots are not equal, but are about 0.6, 0.3, 0.3, and
0.4 msec. The projectile base is at the right end of the
curves. We note again the very high maximum pressures
(6000–7000 bar) for the second and third curves (c.f., with
fig. 20). For the first four curves, there is a roughly linear
slope on the left-hand side of the curves. This represents
the piston, with the rear of the piston being at essentially
zero pressure and the front face of the piston at the maxi-
mum pressure point. The roughly uniform pressure gra-
dient over the length of the piston causes the piston to
slow down very rapidly (see fig. 19). Note that the snap-
shots in the time period of the highest pressures show a
pressure drop by about a factor of two from the high-
pressure reservoir to the start of the barrel (at about
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Figure 19.  CFD predictions of velocity and position histories of front of piston.

Figure 20.  CFD predictions of pressure histories in high-pressure section of gun.

station 3410 cm). This is due to the start of the barrel act-
ing as a sonic throat. The pressure at the projectile base is
calculated to be much less than the maximum pressures in
the high-pressure section of the gun (i.e., 1000–1500 bar
maximum versus 6000-7000 bar). Finally, in the first four
curves and, in particular, for the third and fourth curves,
pressure waves can be seen in the barrel running between
the piston front and the projectile base.

Figure 23 shows the pressure histories in the most forward
hydrogen cell (solid line) and at the projectile base (dotted
line). This hydrogen cell in question is adjacent either to
the break valve (diaphragm) of the projectile base. The
two curves fall on top of each other for much of the time
interval shown. A series of waves of increasing ampli-
tudes oscillates back and forth between the front of the
piston and the break valve until the diaphragm breaks at
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Figure 21.  CFD predictions of pressure snapshots at several times in the gun.

Figure 22.  CFD predictions of pressure snapshots at several times in the gun. (As for fig. 21, but with expanded time
scale.)

about 57.7 msec. Thereafter, the waves continue to oscil-
late between the front of the piston and the base of the
projectile until about 60.1 msec, after which the projectile
base pressure falls continuously. The effective average
projectile base pressure over the length of the barrel is
only about 700 bar, although with many spikes, the high-
est of which reach about 1600 bar. These very sharp

spikes are separated by regions of much lower pressures
(300–400 bar). This can be shown to be due the shock
focusing action of the contraction section of the gun,
which has an average full angle of about 8.7 deg. Using a
much larger angle, such as 40 deg or 60 deg, will make
the pressure history at the projectile base much more
uniform.
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Figure 23.  CFD predictions of pressure history at projectile base and in the last (most forward) hydrogen cell (cell 3,53).

Figure 24.  CFD predictions of projectile base pressure as a function of projectile position in barrel.

Figure 24 shows the projectile base pressure plotted as a
function of the position of the projectile in the barrel. The
same waves shown in figure 23 appear also in figure 24.
From figure 24, one may determine the position of the
projectile in the barrel when it was struck by the various
pressure waves. Also, since (work) = (pressure) × (area) ×
(distance), the effective average projectile base pressure

can be readily be determined as the mean pressure in fig-
ure 24, over the length of the barrel.

Figure 25 shows CFD position and velocity histories of
the projectile. The steepest slopes of the velocity curves
correspond to the arrival, at the projectile base, of the
pressure peaks shown in figures 23 and 24.
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Figure 25.  CFD predictions of velocity and position histories of projectile.

5.7  Discussion of Anomalous Piston Behavior

In this section, we discuss what appears to be very
anomalous behavior of the pump tube piston. The piston
shank diameter is considerably smaller than the tube bore
(see figs. 8 and 9) being designed to ride free of the bore
to reduce piston friction. However, following the model of
section 2.5 and Appendix C (based on that of ref. 4), the
shank should bear against the tube bore for part of the
piston stroke cycle for the following reasons. The maxi-
mum powder-burn pressure is approximately 1000 bar
(fig. 11) and portions of the shank should see axial pres-
sures of up to 700 bar. The maximum hydrogen pressures
are about 7000 bar (figs. 20–22) and portions of the shank
should see axial pressures up to 4000–5000 bar. Now, the
low strain rate yield strength and tensile modulus of elas-
ticity (E) of polyethylene are given in a number of refer-
ences (e.g., ref. 42) as roughly 200 bar and 9000 bar,
respectively. From the longitudinal and shear sound speed
and density data of reference 21 for polyethylene, using
the equations of reference 43, we can deduce an E value
of about 27,000 bar and a Poisson’s ratio of about 0.4.
Now, since the axial pressures in the shank very much
exceed the stated yield strength at low-strain rate, based
on the latter numbers, at least part of the shank should
collapse and bear on the tube wall. Even if we assume
that, at high strain rate, the yield strength of the piston is
somehow very much increased above the low strain rate
values, simply based upon elastic expansion of the piston
under the applied axial pressure, the piston should expand
laterally and bear against the tube wall.

However, upon examining a number of pistons after fir-
ing, we observe the following. The rear land clearly rides
along the bore (as it must), and evidence of this is as
follows.

(1) The land diameter is within 0.002–0.007 cm of
that of the bore (some measurements being very slightly
larger and others, very slightly smaller than the bore).

(2) The original circumferential machining marks
are heavily worn down and, in some cases, removed.

(3) The land shows scratches and streaking in the
axial (travel) direction.

On the other hand, the shank (except where it has been
jammed into the contraction of the high-pressure section)
shows absolutely no evidence of riding on the bore as
indicated by the following observations.

(1) The shank diameter is consistently about 0.20 (or
more) cm less than the bore diameter,

(2) The original circumferential machining marks
remain undamaged.

(3) The shank shows no sign of axial scratches and
streaking (except at the whisker gauge azimuth).

Thus, the piston appears to act as though both of the fol-
lowing are true:

(1) Its high strain rate yield stress is much higher
than the quoted low-strain rate value.
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(2) Its high strain rate tensile/compressive modulus
is much higher than the quoted low-strain rate value (or
alternatively that the high strain rate Poisson’s ratio is
much lower than the value of 0.4 derived from the data of
ref. 21).

As noted in section 3.5, the piston would be calculated to
bounce back after maximum gas compression if the bc at
the front of the piston were not changed to stop the piston
motion when the velocity of the front of the piston reaches
zero. This was done in order to agree with the observed
experimental behavior. This jamming behavior suggests
that the high strain rate shear yield stress may be substan-
tially higher than that estimated from the quoted low-
strain rate tensile yield stress as described in Appendix C.
If the high strain rate shear yield stress (and the friction
coefficient) are sufficiently high, this would suffice to halt
the piston naturally, without having to change the bc. The
observed jamming behavior of the piston is thus, in a gen-
eral way, consistent with the anomalous yielding and
deflection behavior discussed above for the shank of the
piston.

From the above discussion, there appear to be some very
serious unresolved issues regarding high strain rate
behavior of the pump tube piston and the modelling of
same. We hope that the above discussion may perhaps, to
a small degree, aid and stimulate the ballistics community
towards the development of better modelling of piston
phenomena.

6  Summary and Conclusions

We have presented a new code for the calculation of the
performance of two-stage light gas guns. This code is
based on the Godunov method and is third-order accurate
in space and second-order accurate in time. The Riemann
solver used is exact for shocks and uses a very accurate
power law integration for expansion waves. Realistic EOS
are used for all media. The code includes modelling of
friction and heat transfer for powder gas, hydrogen, the
pump-tube piston and the projectile. A simple nonequilib-
rium turbulence model is included for the gas flows and
the predictions of skin friction and heat transfer to the
tube walls in the gas flows are modified accordingly.
Gunpowder burn in the first-stage breech is modelled
using standard ballistic techniques.

The code was first validated with a number of analytical
solutions. These included (1) Riemann’s shock tube
problem at pressure ratios up to 106, (2) impact of two
polyethylene plates at a closing velocity of 20 km/sec,
(3) flow through a convergent-divergent supersonic noz-
zle with an area ratio of 16 to 1, and (4) gunpowder burn

in a closed bomb. All these code validations were found
to be very good to excellent.

The code was then validated by comparing its predictions
with experimental data from the Ames 1.5 in. and 0.28 in.
light gas guns. These data included:

(1) powder-chamber pressure histories,

(2) pump-tube pressure histories,

(3) piston velocities,

(4) projectile velocities, and

(5) the observed final position of the front of the
pump-tube piston.

To model the powder-chamber pressure histories and the
piston velocity properly, it was found to be necessary to
do the following:

(1) increase the burning rate over that given by the
powder manufacturer by 60–90 percent and

(2) reduce the pump-tube piston friction below that
predicted by direct, unadjusted application of the piston
friction model.

Reasons for these changes and the way in which the
parameters were modified were discussed in depth. After
the powder burn rate and the piston friction were adjusted
for one standard operating  condition of each gun, they
were then held constant for all other operating conditions.
Predictions of the CFD code and the experimental mea-
surements were in very good agreement for two very dif-
ferent guns (the Ames 1.5 in. and 0.28 in. guns), over a
considerable range of operating conditions (particularly
for the 0.28 in. gun).

Predictions of the code for the piston and projectile posi-
tion and velocity histories for the 1.5 in. gun were pre-
sented. Calculated pressure histories and snapshots in the
high-pressure section of the gun and at the projectile base
were also presented. Discussion of these histories showed
their usefulness in optimizing gun operating conditions,
for example, to maximize muzzle velocity while maintain-
ing given maximum gun pressures or, conversely, to
reduce the maximum gun pressures while maintaining
muzzle velocity.

Finally, observations made on pump tube pistons after fir-
ing strongly suggest that the high strain rate yielding and
deflection behavior of the pistons in the pump tube is very
different than that which would be predicted using low-
strain rate data. It is suggested that considerably more
work in this area may be necessary to allow improved
predictions of piston behavior to be made.
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APPENDIX A

Gas-Phase Friction and Heat Transfer

We start this analysis with well known (ref. 18 and 19)
skin friction correlations for pipe flow. To correct for the
effects of Mach number (M) and the difference between
the wall temperature (Tw) and the average stream temper-
ature (T), we use the correlations developed by van Driest
(ref. 20). We have developed a “reference temperature”
technique which reproduces the variations of skin friction
coefficient, f (or Cf), with M and Tw/T given by van
Driest’s correlations within about 10 percent over a wide
range of parameters without requiring the iterative solu-
tion of equations (66) or (71) in reference 20. We empha-
size that our “reference temperature” is not the same as
the usually used reference temperature (ref. 44). Our
“reference temperature” (T’) is given by

T T M T Tw' . . .= + +0 9 0 03 0 462 (A-1)

We then evaluate the density and viscosity at the reference
conditions

ρ ρ'
'

= T

T
(A-2)

µ µ ρ' ' ( ' , ' )= T (A-3)

where ρ is the mean cell density. The basic, low pressure
viscosities as functions of temperatures are fit using sim-
ple power laws to data from Golubev (ref. 45). This refer-
ence gives data for H2, N2, CO, CO2, and H2O. For the
hydrogen pump-tube gas, the H2 data is used directly. For
the powder gas, the composition of the powder gas was
taken from data sheets (ref. 46) provided by the powder
manufacturer. The viscosity of the powder gas mixture at
various temperatures was then found by adding up the
individual viscosities from reference 45 multiplied by the
mole fractions. The resulting gas mixture data was then fit
with a power law curve. Golubev (ref. 47) gives density
corrections for viscosity for H2, N2, and CO2. These cor-
rections as a function of density were fit with a sum of
two terms with density ratios to two different powers and
used to estimate a density correction for hydrogen and
powder gas. Lacking pressure correction data for CO and
H2O, the data for N2 and CO2 was assumed to apply to
CO and H2O, respectively.

With ρ ' and µ ' determined, the Reynolds number (Re) for
the cell in question is calculated as

Re'
'

'D
uD= ρ
µ

(A-4)

where u is the cell-center gas velocity and D is the mean
diameter of the cell. The skin friction coefficient (ref. 18)
for pipe flow as a function of Re is then fit with the fol-
lowing expressions

f D D' . Re' , Re'.= ( ) ≥−0 049 55070 2      (A-5)

f D' . , Re'= ≥ ≥0 00875 5507 1828                    (A-6)

f
D

D'
Re'

, Re'= ≥16
1828                       (A-7)

for the turbulent, transition and laminar regimes, respec-
tively. The skin friction coefficient is then corrected for
nonequilibrium turbulence effects as follows

f f f f
TKE

TKETC LAM LAM
neq

eq
' ' ' '

.

= + −( )










0 5

(A-8)

where TKEeq and TKEneq are the equilibrium (steady-
state) and nonequilbrium turbulent kinetic energies for the
cell, f'LAM is the laminar skin friction coefficient, always
calculated from equation (A-7) and f'TC is the final cor-
rected skin friction coefficient. TKEneq is calculated as
shown in Appendix B. f'TC is referenced to the density at
the reference temperature; it is modified to refer to the
mean cell density as follows

f f
T

TTC= '
'

(A-9)

The wall-friction force on the gas, Ffr , for the cell in ques-
tion is then given by

F f u u D xfr = − 1

2
ρ π ∆ (A-10)
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where the wall area for the cell is πD∆x, with ∆x being
the cell length. Absolute value signs are required on one
u term to maintain the proper sign of Ffr . To calculate the
heat transfer from the gas to the walls, Reynolds’ analogy
(ref. 21) is used in the following form, which is correct if
the Prandtl number is taken to be unity:

Q
F

u
H hw

fr
w= −( ) (A-11)

where H is the mean cell total enthalpy, hw is the static
enthalpy evaluated at the wall and Qw is the heat-flow
rate from the cell to the wall. The mean cell total enthalpy
is related to the mean cell static enthalpy, h, by the usual
relation

H h
u= +

2

2
(A-12)

Since hw is not directly available as the cell center compu-
tational fluid dynamics (CFD) solution progresses, it is
approximated as follows

h

h

T

T
w w= (A-13)

Combining equations (A-11)–(A-13) and using the rela-
tion between h, e, p, and ρ , we obtain, finally,

Q
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2

2
(A-14)

which is used to calculate the heat-flow rate from the cell
to the wall in gas-flow regions.

For regions with gas and solids flowing together
(gunpowder/powder gas), Ffr  and Qw are based on the
density, enthalpy and sound speed of the gas only. The
presence of solids is ignored. This two-phase flow situa-
tion applies only in the upstream part of the pump tube for
the first part of the solution before all the powder is
burned. Currently, Tw is prescribed and held fixed at
300 K. Estimates of the wall heating at various locations
in the gun have been made. In most of the pump tube and
the downstream part of the barrel, these effects are rather
small. However, as is well known, in the high pressure
coupling and in the upstream part of the barrel, wall heat-
ing is significant. However, the results of the code
obtained to date are sufficiently good and useful even
without wall-heating effects to warrant presentation in the
current publication. At a later time, it is intended to mod-
ify the code to allow for wall-heating effects.
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APPENDIX B

Gas-Phase Nonequilibrium Turbulence Model

A simple model is developed which assumes that the
nonequilibrium turbulence kinetic energy (TKE) relaxes
towards the equilibrium value for the flow in question
(TKEeq) with an e-folding length (Le) which is a certain
number of tube diameters. (The e-folding length is the
length over which the difference between the nonequilib-
rium and equilibrium TKE will relax to 1/eth of its origi-
nal value in a steady, constant area flow.) Hinze (ref. 22)
presents an extensive discussion of the fully developed
low speed turbulent pipe flow measurements of Laufer
(ref. 23). We estimate Le using (1) Laufer’s graphs
(presented in Hinze) of the TKE distribution across the
pipe radius, (2) Laufer’s graphs (also presented in Hinze)
of the TKE production distribution across the pipe radius,
and (3) Schlichting’s (ref. 48) values for the ratio of max-
imum to mean velocity for low speed, fully developed
pipe flow. From these data for ReD = 5 × 105, we estimate
Le = 3.27 × (pipe diameter). The range of Re for hydrogen
flow in the pump tube is typically 3 × 105 to 3 × 107. The
Re for the data of references 22 and 23 is within our
range, but towards the low end of it. However, turbulent
pipe flow does not appear to change very rapidly with Re
over the Re range of interest (at least over the range
3 × 105 to 3 × 106 reported in ref. 24). Hence, we use the
value of Le given above as a rough estimate in our CFD
model. The relaxation term in our model thus becomes

d TKE
dx

L
TKE TKE

e
eq( ) = −( ) (B-1)

where d(TKE) is the change in TKE which takes place
when the flow moves a distance dx, and we use

TKE ueq = 0 00929 2. (B-2)

also taken from the data of Laufer (ref. 23) for
ReD = 5 × 105. For simplicity in the equations, we have
dropped the subscript “neq” from TKEneq; i.e., “TKE” in

the present equations corresponds to TKEneq in
Appendix A. For one timestep dt, the distance that the
flow moves is simply udt. Since the tube changes diame-
ter in the gun model, Le is not fixed, but is taken to be
equal to RLD, where RL = 3.27, as discussed above.
Inserting these two results into equation (B-1) yields the
following equation for the relaxation term of the TKE
equation

d TKE
udt

DR
TKE TKE

L
eq( ) = −( ) (B-3)

A difficulty with equation (B-3) is that, as it stands, there
will be no TKE relaxation if the velocity, u goes to zero.
Since the TKE will obviously relax due to the turbulent
motion itself, even if u = 0, we have modified equa-
tion (B-3) by replacing u with (u2 + 2TKE)0.5 to yield our
final form for the relaxation term of the TKE equation, as
follows

d TKE
u TKE

DR
dt TKE TKE

L
eq( ) = + −( )

2 2
(B-4)

To calculate the changes of TKE within any cell over a
timestep, equation (B-4) is used, along with the usual
terms taking account of convection of TKE across the cell
boundaries of cells. The nonequilibrium value of TKE
thus calculated is then used to modify the skin friction
coefficient as described in Appendix A.

 Examination of the nonequilibrium and equilibrium TKE
values calculated by the code shows the following. For the
acceleration of the piston and the projectile, the TKE val-
ues are calculated to lag only slightly behind the equilib-
rium values, even during the very high initial accelera-
tions of the piston and projectile. When the piston slows
down very rapidly in the high-pressure section of the gun,
however, the TKE in the rapidly decelerating gas in front
of the piston is calculated to rise well above the equilib-
rium values. The inclusion of the nonequilibrium TKE
model was found to make only minor changes
(1–3 percent) in the code predictions of pressures and
piston and projectile velocities.
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APPENDIX C

Solid-Phase Friction and Heat Transfer

The method used is a variation of that presented in
reference 4. We begin by calculating the normal
stress between the solid body (piston or projectile)
and the tube wall (σn) using the following logic and
equations. Equations (C-2)–(C-7) are written in the
form of two nested block IF FORTRAN statements.

φ
σ

= −












E r

ry

t

p
1 (C-1)

IF φ > µ

σ σn x yp= − (C-2)

ELSE

ψ µ= − −( )1 (C-3)

IF φ < µ

σ σ µ
µn y
xp= +

−1
(C-4)

ELSE

σ

µ

µn

t

p
xE

r

r
p

=

− −








 +

−

1

1
(C-5)

ENDIF

If p px n y n x y( ) ,− ≥ = −σ σ σ σ         (C-6)

If p pn x y n x y( ) ,σ σ σ σ− ≥ = +         (C-7)

ENDIF

where:

rt = tube radius

rp = unstressed initial radius of solid material 
   (outside tube)

σy = yield stress of solid

E = Young’s modulus of solid

µ = Poisson’s ratio of solid

px = axial pressure (from CFD code results)

sn = stress in solid normal to the x direction

In the above equations, since px is positive for pressures
in the CFD code, we have taken σn to be positive for
compression, which is the reverse of the usual strength of
materials convention.

The above set of equations looks formidable but actually
embodies a rather simple elastic-plastic model as follows.
First, the normal stress on the solid (σn) is calculated
assuming elastic behavior, taking into account the applied
pressure in the x direction (px) and the initial jamming of
the solid rod into the tube. If the difference |σn – px| so
calculated is less than the yield stress, σy, this value of σn
is used unmodified. If |σn – px| > σy, then σn is set equal
to px ± σy , as appropriate. This represents the plastic
conditions part of the model. The case where the solid rod
is smaller than the tube (free), either initially (unstressed)
or after the application of px, is allowed for in the above
logic set.

Again following reference 4, the normal stress is limited
as follows (so that it cannot become negative):

σ σn n= max( , )0 (C-8)

A number of references 25–28 have discussed high speed
models for dynamic sliding friction. Reference 26 points
out that the experimental data of reference 25 for nylon on
steel up to about 0.7 km/sec can be fairly well fit with a
curve of the form

µd Au= −0 4. (C-9)

where u is the relative velocity, A is a constant and µd is
the dynamic friction coefficient. Reference 26 used equa-
tion (C-9) for studies of model wear in a two-stage gas
gun. Reference 27 used the same equation for friction
modelling in an electromagnetic launcher. In reference 28,
equation (C-9) for the friction coefficient was generalized
to the following expression for µf, at any velocity
(including zero velocity),

µ µf s
bAu= ( )−min , (C-10)
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where µs is the static friction coefficient. We have used
equation (C-10) recommended by reference 28 and have
reevaluated the coefficients A and b directly from the data
of reference 25 for nylon on steel. We have obtained
b = 0.4224 and A = 8.377 (if the velocity is in cm/sec).
From figure 242 of reference 25, µs is estimated as 0.185.
Lacking dynamic friction data for piston and projectile
materials such as polyethylene and Lexan, we have simply
scaled the A coefficient in equation (C-10), obtained from
the data of reference 25 for nylon on steel, by the
respective static friction coefficients to make first esti-
mates for the dynamic friction coefficients for the other
materials.

With an estimate for the friction coefficient available, the
wall-shear stress, τ w, is calculated from the following two
equations

τ µ σw f n= (C-11)

τ τ
σ

w w
y=







min ,
3

(C-12)

Equation (C-11) is simply the basic friction relation and
equation (C-12) limits the maximum possible wall shear

stress to the shear yield stress, here taken to be 1 3
times the tensile yield stress, following reference 29. With
τw available, the wall friction force on the solid in a given
cell can be found simply by multiplying τ w by the area of
the cell in contact with the wall. The heat-flux rate to the
solid, qw,  due to the solid friction work is simply taken to
be one half the shear stress times the velocity, as follows

q uw w= − 1

2
τ (C-13)

This term, which appears as a source term in the energy
equation, represents energy loss from the solid to the wall
due to frictional heating occurring at the wall. The other
half of the heat generated by the frictional work is
assumed to flow to the solid and does not represent an
energy loss from the cell and therefore should not be
included in the energy equation. If a point mass projectile
is assumed, the wall shear stress and heat-flux source
terms are calculated midway along the corresponding
(equal mass) real length projectile and multiplied by the
proper wall-projectile contact area for the real length
projectile.
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